A Polynomial Time Theory of Integer Programming

Shmuel Onn

Technion - Israel Institute of Technology
http://ie.technion.ac.il/~onn

Based on several papers joint with several co-authors including De Loera, Hemmecke, Lee, Romanchuk, Rothblum, Weismantel
(Non)-Linear Integer Programming

The problem is: \[\min/\max \{ f(x) : Ax \leq b, \ l \leq x \leq u, \ x \in \mathbb{Z}^n \} \]

with data: \(A: \) integer \(m \times n \) matrix \quad \(b: \) right-hand side in \(\mathbb{Z}^m \)
\(l,u: \) lower/upper bounds in \(\mathbb{Z}^n \) \quad \(f: \) function from \(\mathbb{Z}^n \) to \(\mathbb{R} \)

Shmuel Onn
(Non)-Linear Integer Programming

The problem is: \(\min/\max \{ f(x) : \ Ax \leq b, \ \ l \leq x \leq u, \ x \ in \ Z^n \} \)

Has generic modeling power but NP-hard even for linear \(f(x)=wx \)
(Non)-Linear Integer Programming

The problem is: \(\min/\max \{ f(x) : A x \leq b, \ l \leq x \leq u, \ x \in \mathbb{Z}^n \} \)

Has generic modeling power but \(\text{NP-hard} \) even for linear \(f(x) = wx \)

It is polynomial time solvable in \(\text{fixed dimension} \)
(Non)-Linear Integer Programming

The problem is: \(\min/\max \{ f(x) : Ax \leq b, \ l \leq x \leq u, \ x \in \mathbb{Z}^n \} \)

Has generic modeling power but \textit{NP}-hard even for linear \(f(x) = wx \)

It is polynomial time solvable in \textit{fixed dimension}

Our theory enables \textit{polynomial time} solution of \textit{broad natural universal (non)-linear integer programs in variable dimension}

Shmuel Onn
Outline

Overview our theory of Graver bases for integer programming
Outline

Overview our theory of Graver bases for integer programming

Drastically better complexity and fixed-parameter tractability
Outline

Overview our theory of Graver bases for integer programming

Drastically better complexity and fixed-parameter tractability

Applications to multiway tables and huge multicommodity flows

Shmuel Onn
Overview: Graver Bases and Nonlinear Integer Programming
Background in my Book:

Theory of Graver bases for integer programming
(and more)

Available electronically from my homepage
(with kind permission of EMS)
Graver Bases

The Graver basis of an integer matrix A is the finite set $G(A)$ of conformal-minimal nonzero integer vectors x satisfying $Ax = 0$.
Graver Bases

The **Graver basis** of an integer matrix A is the finite set $G(A)$ of conformal-minimal nonzero integer vectors x satisfying $Ax = 0$.

(x is conformal to y if in same orthant and $|x_i| \leq |y_i|$ for all i)
The **Graver basis** of an integer matrix \(A \) is the finite set \(G(A) \) of conformal-minimal nonzero integer vectors \(x \) satisfying \(Ax = 0 \).

\((x \) is conformal to \(y \) if in same orthant and \(|x_i| \leq |y_i| \) for all \(i)\)

Example: Consider \(A=(1\ 2\ 1) \). Then \(G(A) \) consists of
Graver Bases

The *Graver basis* of an integer matrix A is the finite set $G(A)$ of conformal-minimal nonzero integer vectors x satisfying $Ax = 0$.

(x is conformal to y if in same orthant and $|x_i| \leq |y_i|$ for all i)

Example: Consider $A=(1 \ 2 \ 1)$. Then $G(A)$ consists of

circuits: $\pm(2 \ -1 \ 0), \ \pm(1 \ 0 \ -1), \ \pm(0 \ 1 \ -2)$
Graver Bases

The **Graver basis** of an integer matrix A is the finite set $G(A)$ of conformal-minimal nonzero integer vectors x satisfying $Ax = 0$.

(x is conformal to y if in same orthant and $|x_i| \leq |y_i|$ for all i)

Example: Consider $A = (1 \ 2 \ 1)$. Then $G(A)$ consists of

- **circuits:** $\pm(2 \ -1 \ 0)$, $\pm(1 \ 0 \ -1)$, $\pm(0 \ 1 \ -2)$
- **non-circuits:** $\pm(1 \ -1 \ 1)$
Some Theorems on (Non)-Linear Integer Programming

Shmuel Onn
Some Theorems on
(Non)-Linear Integer Programming

Theorem 1: Linear optimization in polytime with $G(A)$:

$$\max \{ wx : A x = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^n \}$$
Some Theorems on
(Non)-Linear Integer Programming

Theorem 1: Linear optimization in polytime with $G(A)$:

$$\max \left\{ wx : Ax = b, \quad l \leq x \leq u, \quad x \in \mathbb{Z}^n \right\}$$

Reference: N-fold integer programming, (De Loera, Hemmecke, Onn, Weismantel)
Discrete Optimization (Volume in memory of George Dantzig)
Theorem 2: Multicriteria maximization in polytime with $G(A)$:

$$\max \{ f(Wx) : Ax = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^n \}$$

where W is $d \times n$ criteria matrix and f convex function on \mathbb{Z}^d
which balances d linear criteria or player utilities $W_i x$
Some Theorems on (Non)-Linear Integer Programming

Theorem 2: Multicriteria maximization in polytime with $G(A)$:

$$\max \{ f(Wx) : Ax = b, \ l \leq x \leq u, \ x \text{ in } \mathbb{Z}^n \}$$

where W is $d \times n$ criteria matrix and f convex function on \mathbb{Z}^d

which balances d linear criteria or player utilities $W_i x$

Shmuel Onn
Some Theorems on (Non)-Linear Integer Programming

Theorem 3: Separable convex minimization in polytime with $G(A)$:

$$\min \left\{ \sum f_i(x_i) : Ax = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^n \right\}$$
Some Theorems on (Non)-Linear Integer Programming

Theorem 3: Separable convex minimization in polytime with $G(A)$:

$$\min \{ \sum f_i(x_i) : Ax = b, \ l \leq x \leq u, \ x \ in \ \mathbb{Z}^n \}$$

Reference: A polynomial oracle-time algorithm for convex integer minimization, (Hemmecke, Onn, Weismantel), Mathematical Programming
Some Theorems on (Non)-Linear Integer Programming

Theorem 4: Integer point closest to \(x \) in polytime with \(G(A) \):

\[
\min \{ |x - x|_p : A x = b, \quad 1 \leq x \leq u, \quad x \in \mathbb{Z}^n \}
\]

Reference: A polynomial oracle-time algorithm for convex integer minimization, (Hemmecke, Onn, Weismantel), Mathematical Programming
Some Theorems on (Non)-Linear Integer Programming

Theorem 5: Quadratic minimization in polytime with $G(A)$:

$$\min \{ x^T V x : A x = b, \ 1 \leq x \leq u, \ x \text{ in } \mathbb{Z}^n \}$$

where V lies in cone $K_2(A)$ of possibly indefinite matrices, enabling minimization of some convex and some non-convex quadratics.
Some Theorems on
(Non)-Linear Integer Programming

Theorem 5: Quadratic minimization in polytime with $G(A)$:

$$\min \{ x^TVx : Ax = b, \ 1 \leq x \leq u, \ x \text{ in } \mathbb{Z}^n \}$$

where V lies in cone $K_2(A)$ of possibly indefinite matrices, enabling minimization of some convex and some non-convex quadratics

Reference: Quadratic Graver cones, quadratic integer minimization & extensions, (Lee, Onn, Romanchuk, Weismantel), Mathematical Programming

Shmuel Onn
Some Theorems on (Non)-Linear Integer Programming

Theorem 6: Polynomial minimization in polytime with $G(A)$:

$$\min \{ p(x) : Ax = b, \ 1 \leq x \leq u, \ x \in \mathbb{Z}^n \}$$

where p is possibly indefinite polynomial of degree d in cone $K_d(A)$, enabling minimization of some (non)-convex degree d polynomials

Reference: Quadratic Graver cones, quadratic integer minimization & extensions, (Lee, Onn, Romanchuk, Weismantel), Mathematical Programming

Shmuel Onn
Some Theorems on (Non)-Linear Integer Programming

Theorem 7: Robust optimization in polytime with $G(A)$:

$$\min \{ \max \{ cx : d \leq c \leq e \} : Ax = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^n \}$$

that is, minimum worst case cost where the cost of each variable can vary in an interval
Some Theorems on (Non)-Linear Integer Programming

Theorem 7: Robust optimization in polytime with $G(A)$:

$$\min \{ \max \{ cx : d \leq c \leq e \} : Ax = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^n \}$$

that is, minimum worst case cost where the cost of each variable can vary in an interval

Reference: Robust integer programming, (Onn), Operations Research Letters
Some Proofs
Proof of Theorem 3
(separable convex minimization)

To solve $\min \{ \sum f_i(x_i) : Ax = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^n \}$

with the Graver basis $G(A)$

Do:
To solve $\min \{ \sum f_i(x_i) : Ax = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^n \}$ with the Graver basis $G(A)$

Do:

1. Find initial point by auxiliary program
To solve \(\min \{ \sum f_i(x_i) : Ax = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^n \} \) with the Graver basis \(G(A) \)

Do:

1. Find initial point by auxiliary program

2. Iteratively improve by Graver-best steps, that is, by best \(cz \) with \(c \in \mathbb{Z} \) and \(z \in G(A) \).
Proof of Theorem 3
(separable convex minimization)

To solve \(\min \{ \sum f_i(x_i) : Ax = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^n \} \) with the Graver basis \(G(A) \)

Do:

1. Find initial point by auxiliary program

2. Iteratively improve by Graver-best steps, that is, by best \(cz \) with \(c \in \mathbb{Z} \) and \(z \in G(A) \).

Using supermodality of \(f \) and integer Caratheodory theorem (Cook-Fonlupt-Schrijver, Sebo) we can show polytime convergence to some optimal solution.
Proof of Theorem 2
(multicriteria maximization)

Lemma: Can solve in polytime $\max \{ f(Wx) : x \in S \}$ with $S \in \mathbb{Z}^n$ if can do linear optimization over S and have set E of all edge-directions of $\text{conv}(S)$
Lemma: Can solve in polytime $\max \{ f(Wx) : x \in S \}$ with S in \mathbb{Z}^n if can do linear optimization over S and have set E of all edge-directions of $\text{conv}(S)$.

Proof of Theorem 2
(multicriteria maximization)

set E of all edge-directions of $\text{conv}(S)$
Proof of Theorem 2
(multicriteria maximization)

Lemma: Can solve in polytime $\max \{ f(Wx) : x \in S \}$ with S in \mathbb{Z}^n if can do linear optimization over S and have set E of all edge-directions of $\text{conv}(S)$

Reference: Convex combinatorial optimization, (Onn, Rothblum), Journal of Discrete and Computational Geometry
Proof of Theorem 2
(multicriteria maximization)

To solve \(\max \{ f(Wx) : x \in S \} \)
with \(S := \{ x \in \mathbb{Z}^n : Ax = b, \ l \leq x \leq u \} \)
using the Graver basis \(G(A) \)

Do:
Proof of Theorem 2
(multicriteria maximization)

To solve \(\max \{ f(Wx) : x \in S \} \)
with \(S := \{ x \in \mathbb{Z}^n : Ax = b, \ l \leq x \leq u \} \)
using the Graver basis \(G(A) \)

Do:

1. Use \(G(A) \) to simulate linear-optimization oracle over \(S \) via Theorem 1
Proof of Theorem 2
(multicriteria maximization)

To solve \(\max \{ f(Wx) : x \in S \} \)

with \(S := \{ x \in \mathbb{Z}^n : Ax = b, \ l \leq x \leq u \} \)

using the Graver basis \(G(A) \)

Do:

1. Use \(G(A) \) to simulate linear-optimization oracle over \(S \) via Theorem 1

2. Use the Graver basis as set \(E := G(A) \) of all edge-directions of \(\text{conv}(S) \)
Proof of Theorem 2
(multicriteria maximization)

To solve \(\max \{ f(Wx) : x \text{ in } S \} \)

with \(S := \{ x \text{ in } \mathbb{Z}^n : Ax = b, \, l \leq x \leq u \} \)

using the Graver basis \(G(A) \)

Do:

1. Use \(G(A) \) to simulate linear-optimization oracle over \(S \) via Theorem 1

2. Use the Graver basis as set \(E := G(A) \) of all edge-directions of \(\text{conv}(S) \)

3. Apply the Lemma (use 1 for each vertex of zone("WG(A)) and pick best)
N-Fold Integer Programming
The n-fold product of an $(r,s) \times t$ bimatrix $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$ is the $(r+ns) \times nt$ matrix $A^{(n)} = \begin{pmatrix} A_1 & A_1 & A_1 & \cdots & A_1 \\ A_2 & 0 & 0 & \cdots & 0 \\ 0 & A_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & A_2 \end{pmatrix}$.

Shmuel Onn
The \(n \)-fold product of an \((r,s) \times t\) bimatrix \(A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} \) is the \((r+ns) \times nt\) matrix

\[
A^{(n)} = \begin{pmatrix}
A_1 & A_1 & A_1 & \cdots & A_1 \\
A_2 & 0 & 0 & \cdots & 0 \\
0 & A_2 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & A_2 \\
\end{pmatrix}
\]

n

Lemma: For fixed \(A \) we can compute the Graver basis \(G(A^{(n)}) \) in polynomial time \(O(n^{g(A)}) \) with \(g(A) \) the Graver complexity of \(A \).
N-Fold Products

The n-fold product of an \((r,s) \times t\) bimatrix \(A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}\) is the \((r+ns) \times nt\) matrix

\[
A^{(n)} = \begin{pmatrix}
A_1 & A_1 & A_1 & \ldots & A_1 \\
A_2 & 0 & 0 & \ldots & 0 \\
0 & A_2 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & A_2 \\
\end{pmatrix}.
\]

Proof very rough idea: For any \(n\), any element \(x=(x^1, \ldots, x^n)\) in the Graver basis \(G(A^{(n)})\) has at most \(g(A)\) nonzero bricks \(x^k\) in \(\mathbb{Z}^t\).

Shmuel Onn
(Non)-Linear N-Fold Integer Programming

Theorem: for various f can solve in polynomial time $O(n^{g(A)} L)$:

$$\min\{f(x) : A^{(n)} x = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^{n_t}\}$$

$$A^{(n)} = \begin{pmatrix} A_1 & A_1 & A_1 & \cdots & A_1 \\ A_2 & 0 & 0 & \cdots & 0 \\ 0 & A_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A_2 \end{pmatrix}$$

References: see *Nonlinear Discrete Optimization, (Onn), Zurich Lectures in Advanced Mathematics, European Mathematical Society*
Drastically Better Complexity
and
Fixed-Parameter Tractability
Cubic Running Time and Fixed-Parameter Tractability

Reference: N-fold integer programming in cubic time,
(Hemmecke, Onn, Romanchuk), Mathematical Programming
Cubic Running Time and Fixed-Parameter Tractability

Theorem: For any fixed bimatrix A, the following linear n-fold integer program is solvable in fixed-parameter time $O(n^3 L)$:

$$\max\{wx : A^{(n)}x = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^{nt}\}$$

Reference: N-fold integer programming in cubic time, (Hemmecke, Onn, Romanchuk), Mathematical Programming
Cubic Running Time and Fixed-Parameter Tractability

Theorem: For any fixed bimatrix A, the following linear n-fold integer program is solvable in fixed-parameter time $O(n^3 L)$:

$$\max \{wx : A^{(n)}x = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^{nt}\}$$

Instead of $O(n^{g(A)} L)$

Reference: N-fold integer programming in cubic time, (Hemmecke, Onn, Romanchuk), Mathematical Programming
Cubic Running Time and Fixed-Parameter Tractability

Theorem: For any fixed bimatrix A, the following linear n-fold integer program is solvable in fixed-parameter time $O(n^3 L)$:

$$\max \{ wx : A^{(n)}x = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^{nt} \}$$

Instead of $O(n^{g(A)} L)$

Proof very rough idea: in the iterative algorithm, at each iteration, can find a Graver-best step without computing the entire Graver basis.

Reference: N-fold integer programming in cubic time, (Hemmecke, Onn, Romanchuk), Mathematical Programming
Some Applications
Multiway Tables

Complexity of deciding the existence of \(l \times m \times n \) tables with given line sums:
Multiway Tables

Complexity of deciding the existence of \(l \times m \times n \) tables with given line sums:

- \(l, m, n \) variable:

- \(l \) fixed, \(m, n \) variable:

- \(l, m \) fixed, \(n \) variable:

- \(l, m, n \) fixed:
Multiway Tables

Complexity of deciding the existence of $l \times m \times n$ tables with given line sums:

- l, m, n variable: NP-complete

 Three dimensional matching, Karp, 1972

- l fixed, m, n variable:

- l, m fixed, n variable:

- l, m, n fixed:

Shmuel Onn
Multiway Tables

Complexity of deciding the existence of $l \times m \times n$ tables with given line sums:

- l, m, n variable: **NP-complete**

 Three dimensional matching, Karp, 1972

- l fixed, m, n variable:

- l, m fixed, n variable:

- l, m, n fixed: **Polytime**

 Integer programming in fixed dimension, Lenstra, 1982

Shmuel Onn
Multiway Tables

Complexity of deciding the existence of $l \times m \times n$ tables with given line sums:

- l, m, n variable: **NP-complete**

 Three dimensional matching, Karp, 1972

- l fixed, m, n variable: **Universal for IP** (even with $l=3$)

 De Loera, Onn, 2006

- l, m fixed, n variable:

- l, m, n fixed: **Polytime**

 Integer programming in fixed dimension, Lenstra, 1982
Multiway Tables

Complexity of deciding the existence of $l \times m \times n$ tables with given line sums:

- l, m, n variable: NP-complete

 Three dimensional matching, Karp, 1972

- l fixed, m, n variable: Universal for IP (even with $l=3$)

 De Loera, Onn, 2006

- l, m fixed, n variable: Polytime

- l, m, n fixed: Polytime

 Integer programming in fixed dimension, Lenstra, 1982

Shmuel Onn
Much more generally, consider the multi-index transportation problem studied by Motzkin in 1952, of minimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins:
Much more generally, consider the multi-index transportation problem studied by Motzkin in 1952, of minimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins:

It is an n-fold program

$$\min \{ f(x) : A^{(n)} x = b, \ x \geq 0, \ x \text{ integer} \}$$

for suitable A depending on m_1, \ldots, m_k where:

- A_1 gives equations of margins summing over layers
- A_2 gives equations of margins summing within a single layer at a time
Much more generally, consider the multi-index transportation problem studied by Motzkin in 1952, of minimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins:

Corollary: (Non)-linear optimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins can be done in polynomial time $O(n^{g(m_1,\ldots,m_k)} L)$.
Multiway Tables

Much more generally, consider the multi-index transportation problem studied by Motzkin in 1952, of minimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins:

Corollary: (Non)-linear optimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins can be done in polynomial time $O(n^{g(m_1, \ldots, m_k)} L)$

In contrast: **Universality of three-way tables** (De Loera, Onn):
Every integer program is one over $3 \times m \times n$ tables with given line-sums

Shmuel Onn
Much more generally, consider the multi-index transportation problem studied by Motzkin in 1952, of minimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins:

Corollary: (Non)-linear optimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins can be done in polynomial time $O(n^{g(m_1, \ldots, m_k)} L)$

Better: (Non)-linear optimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins can be done in fixed-parameter cubic time $O(n^3 L)$
Multicommodity Flows

Find flow of l commodities from m servers to n surfers satisfying given supplies $s_{i,k}$, demands $d_{j,k}$ and capacities $c_{i,j}$ of total bit size L.
Multicommodity Flows

Find flow of l commodities from m servers to n surfers satisfying given supplies $s_{i,k}$, demands $d_{j,k}$ and capacities $c_{i,j}$ of total bit size L.

With $l=2$ or $m=3$ it is NP-complete so assume both l,m are parameters.
Multicommodity Flows

Find flow of l commodities from m servers to n surfers satisfying given supplies $s_{i,k}$, demands $d_{j,k}$ and capacities $c_{i,j}$ of total bit size L

2008: polynomial time $O(n^{g(l,m)} L)$ with Graver complexity $g(l,m)$ exponential in l,m (De Loera, Hemmecke, Onn, Weismantel) (theory of n-fold IP)
Multicommodity Flows

Find flow of l commodities from m servers to n surfers satisfying given supplies $s_{i,k}$, demands $d_{j,k}$ and capacities $c_{i,j}$ of total bit size L.

2008: polynomial time $O(n^{g(l,m)} L)$ with Graver complexity $g(l,m)$ exponential in l,m (De Loera, Hemmecke, Onn, Weismantel) (theory of n-fold IP)

2013: fixed-parameter tractable $O(n^3 L)$ (Hemmecke, Onn, Lyubov Romanchuk)
Multicommodity Flows

Find flow of l commodities from m servers to n surfers satisfying given supplies $s_{i,k}$, demands $d_{j,k}$ and capacities $c_{i,j}$ of total bit size L

2008: polynomial time $O(n^{g(l,m)}L)$ with Graver complexity $g(l,m)$ exponential in l,m
(De Loera, Hemmecke, Onn, Weismantel) (theory of n-fold IP)

2013: fixed-parameter tractable $O(n^3 L)$
(Hemmecke, Onn, Lyubov Romanchuk)

2015: strongly polynomial $O(n^{g(l,m)})$
(De Loera, Hemmecke, Lee)
Multicommodity Flows

Find flow of \(l \) commodities from \(m \) servers to \(n \) surfers satisfying given supplies \(s_{i,k} \), demands \(d_{j,k} \), and capacities \(c_{i,j} \) of total bit size \(L \)

2008: polynomial time \(O(n^{g(l,m)}L) \) with Graver complexity \(g(l,m) \) exponential in \(l,m \)
(De Loera, Hemmecke, Onn, Weismantel) (theory of \(n \)-fold IP)

2013: fixed-parameter tractable \(O(n^3L) \)
(Hemmecke, Onn, Lyubov Romanchuk)
usually the fastest

2015: strongly polynomial \(O(n^{g(l,m)}) \)
(De Loera, Hemmecke, Lee)
Multicommodity Flows

Find flow of l commodities from m servers to n surfers satisfying given supplies $s_{i,k}$, demands $d_{j,k}$ and capacities $c_{i,j}$ of total bit size L

2008: polynomial time $O(n^{g(l,m)} L)$ with Graver complexity $g(l,m)$ exponential in l,m (De Loera, Hemmecke, Onn, Weismantel) (theory of n-fold IP)

2013: fixed-parameter tractable $O(n^3 L)$ (Hemmecke, Onn, Lyubov Romanchuk) usually the fastest

2015: strongly polynomial $O(n^{g(l,m)})$ (De Loera, Hemmecke, Lee)

Open: algorithm that is both fixed-parameter tractable and strongly polynomial?
Multicommodity Flows

Huge version: surfers come in huge clouds of \(t \) types

\[n_1 + \ldots + n_t = n \]

binary encoded

Shmuel Onn
Multicommodity Flows

Huge version: surfers come in huge clouds of \(t \) types

\[n_1 + \ldots + n_t = n \]

2016 (Onn): fixed-parameter tractable with parameters \(l, t \), variable \(m \), huge \(n \)
Multicommodity Flows

Huge version: surfers come in huge clouds of \(t \) types

2016 (Onn): fixed-parameter tractable with parameters \(l, t \), variable \(m \), huge \(n \)

Open: 4-dimensional huge tables are only known to be in \(\text{NP} \) intersect \(\text{coNP} \)
Some Further Developments in Theory and Applications

- Clustering and farmland consolidation, Borgwardt, Melamed, Onn
- Scheduling, Knop, Koutecky
- Stochastic integer programming, Hemmecke, Onn, Weismantel
- Portfolio optimization, Baumann, Trautmann
- Optimality certificates, Kobayashi, Murota, Saito, Weismantel
- Production scheduling, Andziulis, Dzemydien
- Block structured integer programs, Hemmecke, Köppe, Weismantel
- Matrix apportionment problems, Gaffke, Pukelsheim
- Strongly polynomial algorithms, De Loera, Hemmecke, Lee
- Rounding in integer nonlinear optimization, Hubner, Schobel
- Graver complexity, Berstein, Finhold, Hemmecke, Kudo, Nairn, Onn, Takemura
- Network design problems, Guyard, Laugier
- Games, Hemmecke, Nguyen, Onn, Ryan, Weismantel

Shmuel Onn
- The complexity of 3-way tables (SIAM J. Comp.)
- Convex combinatorial optimization (Disc. Comp. Geom.)
- Markov bases of 3-way tables (J. Symb. Comp.)
- All linear and integer programs are slim 3-way programs (SIAM J. Opt.)
- Graver complexity of integer programming (Annals Combin.)
- N-fold integer programming (Disc. Opt. in memory of Dantzig)
- Convex integer maximization via Graver bases (J. Pure App. Algebra)
- Polynomial oracle-time convex integer minimization (Math. Prog.)
- Theory and applications of n-fold integer programming (IMA Volume on MINLP)
- Quadratic Graver cones, quadratic integer minimization & extensions (Math. Prog.)
- Robust integer programming (Operations Research Letters)
- N-fold integer programming in cubic time (Math. Prog.)
- Huge tables and multicommodity flows are fixed-parameter tractable via unimodular integer Caratheodory (J. Computer and System Sciences)
Background in my Book:

Theory of Graver bases for integer programming

(and more)

Available electronically from my homepage

(with kind permission of EMS)