Multiway Tables and Integer Programming are Fixed-Parameter Tractable

Shmuel Onn

Technion - Israel Institute of Technology
Outline

1. **Overview** our theory of **Graver bases** for integer programming

 (with Berstein, De Loera, Hemmecke, Lee, Romanchuk, Rothblum, Weismantel)
Outline

1. **Overview** our theory of *Graver bases for integer programming*
 (with Berstein, De Loera, Hemmecke, Lee, Romanchuk, Rothblum, Weismantel)

2. **Multiway tables** are polynomial time solvable
Outline

1. Overview our theory of Graver bases for integer programming
 (with Berstein, De Loera, Hemmecke, Lee, Romanchuk, Rothblum, Weismantel)

2. Multiway tables are polynomial time solvable

3. Multiway tables and IP are fixed-parameter tractable
 (with Hemmecke and my student Romanchuk, Mathematical Programming, 2013)
Outline

1. Overview our theory of Graver bases for integer programming
 (with Berstein, De Loera, Hemmecke, Lee, Romanchuk, Rothblum, Weismantel)

2. Multiway tables are polynomial time solvable

3. Multiway tables and IP are fixed-parameter tractable
 (with Hemmecke and my student Romanchuk, Mathematical Programming, 2013)

4. Huge multiway tables - P versus NP and coNP
 (posted last week on the Arxiv)

Shmuel Onn
Outline

1. **Overview** our theory of **Graver bases for integer programming**
 (with Berstein, De Loera, Hemmecke, Lee, Romanchuk, Rothblum, Weismantel)

2. **Multiway tables** are **polynomial time solvable**

3. **Multiway tables** and **IP** are **fixed-parameter tractable**
 (with Hemmecke and my student Romanchuk, Mathematical Programming, 2013)

4. **Huge multiway tables** - **P versus NP** and **coNP**
 (posted last week on the Arxiv)

5. **Approximation hierarchy** for **integer programming**

Shmuel Onn
(Non)-Linear Integer Programming

The problem is: \[\min \{ f(x) : Ax = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^n \} \]

with data: \(A \): integer \(m \times n \) matrix \(b \): right-hand side in \(\mathbb{Z}^m \)
\(l, u \): lower/upper bounds in \(\mathbb{Z}^n \) \(f \): function from \(\mathbb{Z}^n \) to \(\mathbb{R} \)

Shmuel Onn
(Non)-Linear Integer Programming

The problem is: \(\min \{ f(x) : Ax = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^n \} \)

with data:
- \(A \): integer \(m \times n \) matrix
- \(b \): right-hand side in \(\mathbb{Z}^m \)
- \(l, u \): lower/upper bounds in \(\mathbb{Z}^n \)
- \(f \): function from \(\mathbb{Z}^n \) to \(\mathbb{R} \)

Our theory enables polynomial time solution of broad natural universal (non)-linear integer programs in variable dimension

Shmuel Onn
Graver Bases

and

Nonlinear Integer Programming
The **Graver basis** of an integer matrix A is the finite set $G(A)$ of conformal-minimal nonzero integer vectors x satisfying $Ax = 0$.

x is conformal-minimal if no other y in same orthant has all $|y_i| \leq |x_i|$.
Graver Bases

The **Graver basis** of an integer matrix A is the finite set $G(A)$ of conformal-minimal nonzero integer vectors x satisfying $Ax = 0$.

Example: Consider $A = (1 \ 2 \ 1)$. Then $G(A)$ consists of

- **circuits:** $\pm(2 \ -1 \ 0)$, $\pm(1 \ 0 \ -1)$, $\pm(0 \ 1 \ -2)$

- **non-circuits:** $\pm(1 \ -1 \ 1)$
Some Theorems on
(Non)-Linear Integer Programming

Theorem 1: linear optimization in polytime with $G(A)$:

$$\min \left\{ wx : Ax = b, \quad l \leq x \leq u, \quad x \in \mathbb{Z}^n \right\}$$

Reference: N-fold integer programming (De Loera, Hemmecke, Onn, Weismantel)
Discrete Optimization (Volume in memory of George Dantzig), 2008

Shmuel Onn
Some Theorems on
(Non)-Linear Integer Programming

Theorem 2: separable convex minimization in polytime with $G(A)$:

$$\min \{ \sum f_i(x_i) : Ax = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^n \}$$

Reference: A polynomial oracle-time algorithm for convex integer minimization
(Hemmecke, Onn, Weismantel) Mathematical Programming, 2011
Some Theorems on
(Non)-Linear Integer Programming

Theorem 3: polynomial minimization in polytime with $G(A)$:

$$\min \{ p(x) : Ax = b, \ 1 \leq x \leq u, \ x \in \mathbb{Z}^n \}$$

for a certain class of possibly non-convex multivariate polynomials.

Reference: The quadratic Graver cone, quadratic integer minimization & extensions
(Lee, Onn, Romanchuk, Weismantel), Mathematical Programming, 2012

Shmuel Onn
The Iterative Algorithm
Proof of Theorem 2

To solve $\min \{ f(x) : Ax = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^n \}$

with the Graver basis $G(A)$

Do:
Proof of Theorem 2

To solve \(\min \{ f(x) : A x = b, \ 1 \leq x \leq u, \ x \in \mathbb{Z}^n \} \) with the Graver basis \(G(A) \)

Do:

1. Find initial point by auxiliary program
Proof of Theorem 2

To solve \(\min \{ f(x) : Ax = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^n \} \)

with the Graver basis \(G(A) \)

Do:

1. Find initial point by auxiliary program

2. Iteratively improve by Graver-best steps, that is, by best \(cz \) with \(c \in \mathbb{Z} \) and \(z \in G(A) \).
Proof of Theorem 2

To solve \(\min \{ f(x) : Ax = b, \quad l \leq x \leq u, \quad x \in \mathbb{Z}^n \} \) with the **Graver basis** \(G(A) \)

Do:

1. **Find initial point** by auxiliary program
2. **Iteratively improve** by **Graver-best steps**, that is, by best \(cz \) with \(c \in \mathbb{Z} \) and \(z \in G(A) \).

Using supermodality of \(f \) and integer Caratheodory theorem (Cook-Fonlupt-Schrijver, Sebo) we can show polytime convergence to some optimal solution.
Multiway Tables
Multiway Tables

The multiway table problem of Motzkin (1952) concerns minimization over $m_1 \times \cdots \times m_k \times m_{k+1}$ tables with given margins.
Multiway Tables

The multiway table problem of Motzkin (1952) concerns minimization over $m_1 \times \cdots \times m_k \times m_{k+1}$ tables with given margins.

If all m_i fixed then solvable by fixed dimension theory.
Multiway Tables

The multiway table problem of Motzkin (1952) concerns minimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins.
Multiway Tables

The multiway table problem of Motzkin (1952) concerns minimization over \(m_1 \times \cdots \times m_k \times n \) tables with given margins.

If one side \(n \) is variable then we have the following:

Lemma: For fixed \(m_1, \ldots, m_k \) there is Graver complexity \(g := g(m_1, \ldots, m_k) \) such that the relevant Graver basis consists of all \(O(n^g) \) lifts of the relevant Graver basis of \(m_1 \times \cdots \times m_k \times g \) tables.
Multiway Tables

The multiway table problem of Motzkin (1952) concerns minimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins.

If one side n is variable then we have the following:

Lemma: For fixed m_1, \ldots, m_k there is Graver complexity $g := g(m_1, \ldots, m_k)$ such that the relevant Graver basis consists of all $O(n^g)$ lifts of the relevant Graver basis of $m_1 \times \cdots \times m_k \times g$ tables.

$g(3,3) = 9$, $g(3,4) = 27$, $g(3,5) = ?$ \quad $\Omega(2^m) = g(3,m) = O(6^m)$

Shmuel Onn
Corollary: (Non)-linear optimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins is doable in polynomial time $O(n^{g(m_1, \ldots, m_k)} L)$.

Multiway Tables

The multiway table problem of Motzkin (1952) concerns minimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins.
Multiway Tables

The multiway table problem of Motzkin (1952) concerns minimization over \(m_1 \times \cdots \times m_k \times n \) tables with given margins.

Corollary: (Non)-linear optimization over \(m_1 \times \cdots \times m_k \times n \) tables with given margins is doable in polynomial time \(O(n^{g(m_1,\ldots,m_k)} L) \).

However, if two sides are variable then have the **Universality Theorem:**
Every integer program is one over \(3 \times m \times n \) tables with given line-sums.
Fixed-Parameter Tractability
Multiway Tables are Fixed-Parameter Tractable

Reference: N-fold integer programming in cubic time
(Hemmecke, Onn, Romanchuk) Mathematical Programming, 2013
Multiway Tables are Fixed-Parameter Tractable

Theorem: (Non)-linear optimization over $m_1 \times \ldots \times m_k \times n$ tables with given margins is doable in fixed-parameter cubic time $O(n^3 L)$.
Multiway Tables are Fixed-Parameter Tractable

Theorem: (Non)-linear optimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins is doable in fixed-parameter cubic time $O(n^3L)$.

Instead of $O(n^{g(m_1,\ldots,m_k)}L)$
Multiway Tables are Fixed-Parameter Tractable

Theorem: (Non)-linear optimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins is doable in fixed-parameter cubic time $O(n^3 L)$.

Instead of $O(n^{g(m_1,\ldots,m_k)} L)$

Now, have parameterization of all integer programming by universality: Every integer program is one over $3 \times m \times n$ tables with given line-sums.
Multiway Tables are Fixed-Parameter Tractable

Theorem: (Non)-linear optimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins is doable in fixed-parameter cubic time $O(n^3 L)$.

Instead of $O(n^{g(m_1 ,\ldots, m_k)} L)$

Now, have parameterization of all integer programming by *universality*: Every integer program is one over $3 \times m \times n$ tables with given line-sums.

Corollary: (nonlinear) integer programming is fixed-parameter tractable: for each fixed m it is solvable in time $O(n^3 L)$ instead of $O(n^{g(3,m)} L)$.
Proof: Better Way of Finding Graver-Best Steps

Let x be a feasible $l \times m \times n$ table at some iteration of minimizing w over such tables with given line-sums and let G be the Graver basis.
Proof: Better Way of Finding Graver-Best Steps

Let x be a feasible $l \times m \times n$ table at some iteration of minimizing w over such tables with given line-sums and let G be the Graver basis.

A Graver-best step for x is a table h such that $x+h$ is feasible and at least as good as any feasible $x+cz$ with $c \in \mathbb{Z}$ and $z \in G$.
Proof: Better Way of Finding Graver-Best Steps

Let x be a feasible $l \times m \times n$ table at some iteration of minimizing w over such tables with given line-sums and let G be the Graver basis.

A *Graver-best step* for x is a table h such that $x+h$ is feasible and at least as good as any feasible $x+cz$ with $c \in \mathbb{Z}$ and $z \in G$.

Previous way: for each of $O(n^{g(l,m)})$ tables $z \in G$ find best $c \in \mathbb{Z}$
Proof: Better Way of Finding Graver-Best Steps

Let x be a feasible $l \times m \times n$ table at some iteration of minimizing w over such tables with given line-sums and let G be the Graver basis.

A Graver-best step for x is a table h such that $x+h$ is feasible and at least as good as any feasible $x+cz$ with $c \in \mathbb{Z}$ and $z \in G$.

Previous way: for each of $O(n^{g(l,m)})$ tables $z \in G$ find best $c \in \mathbb{Z}$

New way: for each c find ch at least as good as any cz with $z \in G$
Proof: Better Way of Finding Graver-Best Steps

Let x be a feasible $l \times m \times n$ table at some iteration of minimizing w over such tables with given line-sums and let G be the Graver basis.

Let $V(l,m) := \{v : v$ is sum of at most $g(l,m)$ many $l \times m$ circuit matrices}$
Proof: Better Way of Finding Graver-Best Steps

Let x be a feasible $l \times m \times n$ table at some iteration of minimizing w over such tables with given line-sums and let G be the Graver basis.

Let $V(l,m) := \{v : v$ is sum of at most $g(l,m)$ many $l \times m$ circuit matrices$\}$

Example: for $3 \times 3 \times n$ tables, $V(3,3)$ consists of 42931 matrices such as

$$
\begin{bmatrix}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{bmatrix}
$$

$$
\begin{bmatrix}
9 & -2 & -7 \\
-4 & 5 & -1 \\
-5 & -3 & 8
\end{bmatrix}
$$
Proof: Better Way of Finding Graver-Best Steps

Let x be a feasible $l \times m \times n$ table at some iteration of minimizing w over such tables with given line-sums and let G be the Graver basis.

Let $V(l,m) := \{ v : v \text{ is sum of at most } g(l,m) \text{ many } l \times m \text{ circuit matrices} \}$

Note that $|V(l,m)| \leq c(l,m)^{g(l,m)}$ is (huge) constant.

Example: for $3 \times 3 \times n$ tables, $V(3,3)$ consists of 42931 matrices such as

$$\begin{pmatrix}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
9 & -2 & -7 \\
-4 & 5 & -1 \\
-5 & 3 & 8
\end{pmatrix}$$

Shmuel Onn
Proof: Better Way of Finding Graver-Best Steps

Let x be a feasible $l \times m \times n$ table at some iteration of minimizing w over such tables with given line-sums and let G be the Graver basis.

Let $V(l,m) := \{v : v$ is sum of at most $g(l,m)$ many $l \times m$ circuit matrices$\}$

Lemma: For every n and every $l \times m \times n$ table h in the Graver basis G, the sum of every subset of layers of h is a matrix in $V(l,m)$.

Shmuel Onn
Proof: Better Way of Finding Graver-Best Steps

Let x be a feasible $l \times m \times n$ table at some iteration of minimizing w over such tables with given line-sums and let G be the Graver basis.

Let $V(l,m) := \{v: v \text{ is sum of at most } g(l,m) \text{ many } l \times m \text{ circuit matrices}\}$

For each $c \in \mathbb{Z}$ construct the following dynamic program:

- $S_0 = \{0\}$
- $S_{i-1} = V(l,m)$
- $S_i = V(l,m)$
- $S_n = \{0\}$

v_{i-1} to v_i:
- $h_i := v_i - v_{i-1} \in V(l,m)$
- $x_i + ch_i \geq 0$
- Length $w_i h_i$
Lemma: Each feasible step $c_h = (c_{h1}, \ldots, c_{hn})$ with $h \in G$ gives dipath $(0, v^1, \ldots, v^n)$ in the dynamic program, with each $v^i = h^1 + \ldots + h^i \in V(l,m)$.

Proof: Better Way of Finding Graver-Best Steps
Proof: Better Way of Finding Graver-Best Steps

Lemma: Each feasible step \(ch = (ch^1, \ldots, ch^n) \) with \(h \in G \) gives dipath \((0, v^1, \ldots, v^n) \) in the dynamic program, with each \(v^i = h^1 + \ldots + h^i \in V(l,m) \).

Lemma: A Graver-best step for \(x \) can be computed in \(O(n^2) \) time, solving \(O(|V(l,m)| \cdot n) \) dynamic programs each in time \(O(|V(l,m)|^2 \cdot n) \).

\[
\begin{align*}
S_0 &= \{0\} & S_{i-1} &= V(l,m) & S_i &= V(l,m) & S_n &= \{0\} \\
S_0 &= \{0\} & S_{i-1} &= V(l,m) & S_i &= V(l,m) & S_n &= \{0\}
\end{align*}
\]

Lemma: Each feasible step \(ch = (ch^1, \ldots, ch^n) \) with \(h \in G \) gives dipath \((0, v^1, \ldots, v^n) \) in the dynamic program, with each \(v^i = h^1 + \ldots + h^i \in V(l,m) \).
Proof: Better Way of Finding Graver-Best Steps

Example: for $3 \times 3 \times n$ tables, $V(3,3)$ consists of 42931 matrices such as

\[
\begin{pmatrix}
9 & -2 & -7 \\
-4 & 5 & -1 \\
-5 & -3 & 8
\end{pmatrix}
\]

so finding a single Graver-best step in a single iteration involves some $10^{14}n^2$ arithmetic operations per iteration.
Huge Multiway Tables
Huge Multiway Tables

Consider the problem of deciding existence of an $l \times m \times n$ huge table with t given types of row-sums and column-sums having n_k layers of each type k with the n_k encoded in binary.
Huge Multiway Tables

Consider the problem of deciding existence of an \(l \times m \times n \) huge table with \(t \) given types of row-sums and column-sums having \(n_k \) layers of each type \(k \) with the \(n_k \) encoded in binary.

Theorem: For fixed \(t \) the problem is in \(P \).
For variable \(t \) it is in \(NP \) and \(coNP \).

Reference: Huge Multiway Table Problems (Onn), posted on the Arxiv last week
Graver Approximation Hierarchy
Graver Approximation Hierarchy

Our algorithm naturally enables a hierarchy of approximations of the universal integer program over $3 \times m \times n$ tables with variable m,n.
Graver Approximation Hierarchy

Our algorithm naturally enables a hierarchy of approximations of the universal integer program over $3 \times m \times n$ tables with variable m,n.

At level d of this hierarchy, we find approximated Graver-best steps in time $O(m^{9d} n^2)$, approximating $V(3,m)$ in the dynamic programs by

$$V_d(3,m) := \{ v : v \text{ is sum of at most } d \text{ many } 3 \times m \text{ circuit matrices} \}$$
Graver Approximation Hierarchy

Our algorithm naturally enables a hierarchy of approximations of the universal integer program over $3 \times m \times n$ tables with variable m,n.

At level d of this hierarchy, we find approximated Graver-best steps in time $O(m^{9d} n^2)$, approximating $V(3,m)$ in the dynamic programs by

$$V_d(3,m) := \{ v : v \text{ is sum of at most } d \text{ many } 3 \times m \text{ circuit matrices} \}$$

We apply Graver-best steps while possible. If the approximation is satisfactory then we stop, else we proceed to the next level.

Shmuel Onn
Some Bibliography
(available at http://ie.technion.ac.il/~onn)

- The complexity of 3-way tables (SIAM J. Comp.)
- Convex combinatorial optimization (Disc. Comp. Geom.)
- Markov bases of 3-way tables (J. Symb. Comp.)
- All linear and integer programs are slim 3-way programs (SIAM J. Opt.)
- Graver complexity of integer programming (Annals Combin.)
- N-fold integer programming (Disc. Opt. in memory of Dantzig)
- Convex integer maximization via Graver bases (J. Pure App. Algebra)
- Polynomial oracle-time convex integer minimization (Math. Prog.)
- The quadratic Graver cone, quadratic integer minimization & extensions (Math Prog.)
- N-fold integer programming in cubic time (Math. Prog.)
- Huge multiway table problems (Arxiv)
Comprehensive development is in my monograph available electronically from my homepage (with kind permission of EMS) (excluding fixed-parameter result and huge multiway table results)