Mixing Time Analysis of the Glauber Dynamics for the Curie-Weiss-Potts Model

P. Cuff J. Ding E. Lubetzky Y. Peres A. Sly O. Louidor

Microsoft Research

Cornell Summer School in Probability 2009
Outline

1. Problem Definition
 - The Potts Model
 - Glauber Dynamics
 - Mixing Time
 - The Problem

2. Previous Results

3. New Results

4. Proofs
Setup and Terminology

Let $G = (V, E)$ be a finite graph, $q \in \mathbb{N}$ (number of colors) and $\hat{\beta} \in \mathbb{R}$ - inverse temperature.

A configuration σ is an element of $\Omega = \{1, \ldots, q\}^V$.

On Ω define the (Gibbs) measure:

$$\mu(\sigma) = \mu_{\hat{\beta}, G}(\sigma) = \frac{1}{Z_{\hat{\beta}, G}} \exp \left\{ \hat{\beta} \mathcal{H}_G(\sigma) \right\}$$

where:

- $\mathcal{H}_G(\sigma) = \sum_{(u,v) \in E} \mathbb{1}_{\sigma(u) = \sigma(v)}$ - the (associated) Hamiltonian.
- $Z_{\hat{\beta}, G}$ makes μ a probability measure - the Partition Function.

Names:

- $q = 2$: The Ising Model on G.
- $q > 2$: The Potts Model on G.
- $G = C_n$ (the complete graph with n vertices): Curie-Weiss Potts/Ising or Mean-field Potts/Ising.
The Question

Question: Given a particular sequence \((\hat{\beta}_n, G_n)_{n \geq 1}\), describe \(\mu_{\hat{\beta}_n, G_n}\) for large \(n\) or in an appropriate limit.

For Curie Weiss Potts, with \(\hat{\beta}_n = \frac{\beta}{n}\) for some \(\beta \in \mathbb{R}\), much is known (the easiest case).

For instance . . .
Fractions Vector

For $\sigma \in \Omega$ define $S(\sigma) \in S^q = \{x \in \mathbb{R}_+^q : \|x\|_1 = 1\}$ by:

$$S^k(\sigma) = \frac{1}{|V|} \sum_{v \in V} \mathbf{1}_{\{k\}}(\sigma(v)) ; \quad k = 1, \ldots, q$$

- the fractions vector.

Define $\pi_{\beta,G}$ as the distribution of $S(\sigma)$ when σ is sampled using $\mu_{\beta,G}$.

Set $\pi_\infty = \lim_{n \to \infty} \pi_{\beta_n,G_n}$.
Then there exists $\beta_c = \beta_c(q)$ such that:

- $\beta < \beta_c$ (high temperature):
 \[\pi_{\frac{\beta}{n},c_n} \Rightarrow \delta_{\frac{1}{q}} \quad \text{as} \quad n \to \infty. \]
 where $\frac{1}{q}$ denotes the vector $(1/q, 1/q \ldots 1/q) \in S^q$.

- $\beta > \beta_c$ (low temperature):
 \[\pi_{\frac{\beta}{n},c_n} \Rightarrow \sum_{k=1}^q \frac{1}{q} \delta_{T^k\hat{s}(\beta)} \quad \text{as} \quad n \to \infty. \]
 where:
 \[\hat{s}(\beta) = \left(\hat{s}^1(\beta), \frac{1-\hat{s}^1(\beta)}{q-1}, \ldots, \frac{1-\hat{s}^1(\beta)}{q-1}\right) \in S^q \]
 T^k interchanges the first and k-th component.

- $\beta = \beta_c$ (critical temperature):
 \[\pi_{\frac{\beta}{n},c_n} \Rightarrow p(\beta)\delta_{\frac{1}{q}} + (1 - p(\beta)) \sum_{k=1}^q \frac{1}{q} \delta_{T^k\hat{s}(\beta)} \quad \text{as} \quad n \to \infty. \]
 where $p(\beta) \in (0, 1)$.
Phase Transition - Remarks

- \(\beta_c(q), \hat{s}(\beta) \) and \(p(\beta) \) are explicitly known.
- In fact \(\left(\pi_{\frac{p}{n}}, c_n \right)_{n \geq 1} \) satisfies a LDP on \(S^q \) with rate function:

\[
I_{\beta}(s) = R(s) - \frac{\beta}{2} \| s \| - \text{const}
\]

where \(R(s) \) is the rate function for the fractions vector when \(\beta = 0 \).

Thus, describing \(\pi_{\infty} = \pi_{\infty}(\beta) \) is solving the minimization problem of \(R(s) - \frac{\beta}{2} \| s \|_2 \) in \(S^q \).

- If \(q = 2 \), \(\hat{s}(\beta_c(2)) = \frac{1}{q} \) and the mapping \(\beta \mapsto \pi_{\infty}(\beta) \) is continuous (under the weak-topology for measures). Thus this is a second order phase transition.

- If \(q > 2 \), \(\hat{s}(\beta_c(q)) \neq \frac{1}{q} \), the mapping \(\beta \mapsto \pi_{\infty}(\beta) \) is not continuous and the phase transition is of first order. This will play a part in the rate of mixing.

- Show Graphs
Markov Chain Monte Carlo (MCMC)

A way to approximately sample from a probability measure μ on a finite space Ω.

Idea: Markov Chain Monte Carlo (MCMC). Construct a Markov chain with state space Ω and μ as its stationary-ergodic distribution. Then, start from any configuration and let the chain evolve randomly for long enough time, until the distribution of the current state is close to μ.

Useful when exact sampling is computationally expensive (e.g. One has to exhaust all of Ω), but computing the transition probabilities is easy.

What is long enough time? One has to study the rate of convergence to stationarity - Mixing Time (later).

If $\Omega = \{1, \ldots, q\}^V$, many dynamics are possible (Glauber, Metropolis, Swendsen Wang, ...). Differ in how fast they mix.
Glauber Dynamics

Single site update dynamics for a measure μ on $\Omega = \{1, \ldots, q\}^V$:

- Start from any configuration σ_0.
- Transition:
 - Choose a vertex $u \in V$ at random.
 - Update:
 $$\sigma_{t+1}(v) = \begin{cases}
 \sigma_t(v) & \text{if } v \neq u \\
 k & \text{if } v = u \quad \text{w.p. } \mu(\sigma(u) = k | \sigma(v) = \sigma_t(v); v \neq u)
 \end{cases}$$
- Repeat.

Conditional probabilities are straightforward if μ is a Gibbs measure (part of the definition).

$(\sigma_t)_t$ is a finite-states irreducible and aperiodic chain (at least if μ has the finite energy property), hence converges to its unique stationary distribution μ.

But how fast?
Let \((X_t)_{t \in \mathbb{N}}\) be a Markov chain with state space \(S\), transition kernel \(P\) and stationary distribution \(\pi\).

Set \(d(t) = \sup_{x_0 \in S} \|P^{X_0}(X_t \in \bullet) - \pi\|_{\text{TV}}\) where \(X_0 = x_0\) under \(P^{x_0}\).
(Reminder: \(\|\mu - \nu\|_{\text{TV}} = \sup_A |\mu(A) - \nu(A)|\)).

The \(\varepsilon\)-Mixing Time of \((X_t)_{t \in \mathbb{N}}\) is:

\[
 t^M(\varepsilon) = \inf \{ t : d(t) < \varepsilon \}
\]

If no \(\varepsilon\) is specified, it is customary to use \(\varepsilon = 1/4\).
Let \((P_n)_n\) be a particular sequence of Markov chain kernels and denote by \(t^M_n(\varepsilon)\) their \(\varepsilon\)-mixing times.

We would like to know how \(t^M_n(\varepsilon)\) grows with \(n\):

- If \(t^M_n(\varepsilon)\) grows polynomially, we say that the mixing is **rapid**.
- If \(t^M_n(\varepsilon)\) grows exponentially, we say that the mixing is **slow**.

Also, if for some (and hence any) \(\varepsilon_0\) and all \(\varepsilon\):

\[
t^M_n(\varepsilon) - t^M_n(1 - \varepsilon) \triangleq w_n(\varepsilon) = o(t^M_n(\varepsilon_0)) \quad \text{as} \quad n \to \infty
\]

we say that the sequence of dynamics exhibits a **cut-off**.

- The distance to stationarity sharply changes from 1 to 0 (relatively to the mixing time).
- If \(w_n(\varepsilon) = \theta_\varepsilon(W(n))\) we say that the **cut-off window** has order \(W(n)\).
The Problem

Analyze the Mixing Time of the Glauber Dynamics for the Curie-Weiss Potts Model.

i.e., Fix β and q, consider a sequence of Glauber dynamics for the Potts distribution on the n-complete graph: $\mu_{\beta \frac{n}{n}, C_{n}}$ and analyze the mixing time $t_{n}^{M}(\varepsilon)$ as a function of n.
Previous Results

Complete analysis for the Curie-Weiss Ising case ($q = 2$):

- $\beta < \beta_c(2) = 2$ (high temperature):

 $t_n^M(\varepsilon) \sim \frac{1}{2} \left(1 - \frac{\beta}{2}\right)^{-1} n \log n$

 $w_n(\varepsilon) = \theta_{\varepsilon}(n)$

 [Aizenman, Holley ’87], [Bubley, Dyer ’97], [Levin, Luczak, Peres ’07].

- $\beta > \beta_c$ (low temperature):

 $t_n^M(\varepsilon)$ is exponential in n.

 [Griffiths, Weng and Langer ’66]

- $\beta = \beta_c$ (critical temperature):

 $t_n^M(\varepsilon) = \theta_{\varepsilon} \left(n^{3/2}\right)$.

 No cut-off.

 [Levin, Luczak, Peres ’07], [Ding, Lubetzky, Peres ’08]
Still $q = 2$ case. Now let $\beta = \beta_n$ change with n.

$\beta_n = \beta_c - \delta_n$:
- $\delta_n = \omega \left(\frac{1}{\sqrt{n}} \right)$ \quad \Rightarrow \quad $t_n^M (\varepsilon) \sim \frac{n}{\delta} \log (\delta^2 n)$, $w_n (\varepsilon) = \theta (\frac{n}{\delta})$.
- $\delta_n = O \left(\frac{1}{\sqrt{n}} \right)$ \quad \Rightarrow \quad $t_n^M (\varepsilon) = \theta (n^{3/2})$, no cut-off.

$\beta_n = \beta_c + \delta_n$:
- $\delta_n = \omega \left(\frac{1}{\sqrt{n}} \right)$ but $\delta_n = o(1)$ \quad \Rightarrow \quad $t_n^M (\varepsilon) = \theta (\frac{n}{\delta} \exp \left(\left(\frac{3}{4} + o(1) \right) \delta^2 n \right))$.
- $\delta_n = \Omega (1)$ \quad \Rightarrow \quad $t_n^M (\varepsilon)$ is exponential in n.
- $\delta_n = O \left(\frac{1}{\sqrt{n}} \right)$ \quad \Rightarrow \quad $t_n^M (\varepsilon) = \theta (n^{3/2})$.
- No cut-off.

[Ding, Lubetzky, Peres ’08]
New Results - The Case $q > 2$

There exists a new critical beta $\beta_M(q) < \beta_c(q) < q$ such that:

- **$\beta < \beta_M$:**
 \[t_n^M(\varepsilon) \sim \frac{1}{2} \left(1 - \frac{\beta}{q} \right)^{-1} n \log n \]
 \[w_n(\varepsilon) = \theta_{\varepsilon}(n) \]

- **$\beta > \beta_M$:**
 $t_n^M(\varepsilon)$ is exponential in n.

- **$\beta = \beta_M$:**
 \[t_n^M(\varepsilon) = \theta_{\varepsilon}(n^{4/3}) \]
 No cut-off.

$\beta_M(q)$ is explicitly known.
New Results - More

Approaching criticality - $\beta = \beta_n = \beta_M - \delta_n$:

- $\delta_n = \omega \left(n^{-2/3} \right) \Rightarrow t_n^M (\varepsilon) \sim C \frac{n}{\sqrt{\delta}}, \ w_n(\varepsilon) = O_\varepsilon \left(\sqrt{\frac{n}{\delta^{5/2}}} \right)$.
- $\delta_n = O \left(n^{-2/3} \right) \Rightarrow t_n^M (\varepsilon) = \theta_\varepsilon \left(n^{4/3} \right)$, no cut-off.

Essential Mixing - $\beta_M < \beta < \beta_c$:

There exists $\Omega_n \subseteq \Omega$ with $\mu_{\beta_n, c_n} (\Omega_n) \leq e^{-cn}$ such that:

- $t_n^{M, \Omega \setminus \Omega_n} (\varepsilon) \sim \frac{1}{2} \left(1 - \frac{\beta}{q} \right)^{-1} n \log n$
- $w_n^{\Omega \setminus \Omega_n} (\varepsilon) = \theta_\varepsilon (n)$

where $t_n^{M, \Omega \setminus \Omega_n} (\varepsilon), w_n^{\Omega \setminus \Omega_n} (\varepsilon)$ are the mixing time and cut-off window when one is not allowed to start the dynamics from $\sigma \in \Omega_n$. We say that the dynamics essentially mixes rapidly.

Low temperature - $\beta \geq \beta_c$:

$t_n^M (\varepsilon)$ is exponential in n. No essentially rapid mixing.
Intuition

Intuition Comes from looking at the rate function - $l_\beta(s)$.

Because of first order phase transition, near but before β_c local minima emerge at $T^k \hat{s}(\beta)$; $k = 1, \ldots, q$.

These will slow down the mixing.

Starts to happen exactly at β_M.

Show Graphs.
Use the **Bottleneck Ratio** - For a Markov chain with transition kernel P and stationary distribution π:

$$
t^M(1/4) \geq \frac{1}{4} \sup_{\substack{S \subseteq S \\ \pi(S) \leq 1/2}} \frac{\pi(S)}{\sum_{x \in S, y \notin S} \pi(x) P(x, y)} \\
\geq \frac{1}{4} \sup_{\substack{S \subseteq S \\ \pi(S) \leq 1/2}} \frac{\pi(S)}{\pi(\partial S)}
$$

Then, local minima in the rate function immediately implies exponential mixing time.
Below β_M - Key Formula 1

Examine the fractions chain: $S_t = S(\sigma_t)$ (Markovian).

Key formula 1 - Recursion for expected distance to the equidistributed configuration:

$$\mathbb{E}\|S_{t+1} - \frac{1}{q}\|^2 = \mathbb{E}\|S_t - \frac{1}{q}\|^2 \left(1 - \frac{2\left(1 - \frac{\beta}{q}\right)}{n}\right) + \text{Error} \left(\mathbb{E}\|S_t - \frac{1}{q}\|^2, n\right)$$

$\exists \eta > 0$, such that if $\mathbb{E}\|S_0 - \frac{1}{q}\|^2 < \eta$, this gives a contraction:

$$\mathbb{E}\|S_t - \frac{1}{q}\|^2 = \left(1 - \frac{2\left(1 - \frac{\beta}{q}\right)}{n}\right)^t \|S_0 - \frac{1}{q}\|^2 + \text{Error}(n)$$
Key formula 2 - Conditional drift of one coordinate:

$$\mathbb{E} (S_{t+1}^1 - S_t^1 \mid S_t) \leq \frac{1}{n} \left(\frac{e^{\beta S_t^1}}{e^{\beta S_t^1} + (q-1)e^{\beta(1-S_t^1)/(q-1)}} - S_t^1 \right)$$

The r.h.s is strictly negative away from $1/q$ if and only if $\beta < \beta_M$.

Below β_M - Key Formula 2
Below β_M - Lower Bound on Mixing Time

Start from a configuration σ_0 with $S(\sigma_0) < \eta$

If $t_n = \frac{1}{2} \left(1 - \frac{\beta}{q}\right)^{-1} n \log n - \gamma n$, from the contraction formula:

$$\mathbb{E}\|S_{t_n} - \frac{1}{q}\|^2 \geq A(\gamma)n^{-1}$$

for n large, with $A(\gamma) \to \infty$ when $\gamma \to \infty$.

By bounding the variance, this will imply that S_{t_n} is far from $\frac{1}{q}$ for large n with probability tending to 1 as $\gamma \to \infty$.

Since $\pi_{\frac{\beta}{n},C_n}$ concentrates around $\frac{1}{q}$, the same is true for

$$\|\mathbb{P}(S_{t_n} \in \bullet) - \pi_{\frac{\beta}{n},C_n}\|_{TV}.$$

Finally

$$\|\mathbb{P}(X_{t_n} \in \bullet) - \mu_{\frac{\beta}{n},C_n}\|_{TV} \geq \|\mathbb{P}(S_{t_n} \in \bullet) - \pi_{\frac{\beta}{n},C_n}\|_{TV}.$$
Start from any configuration σ_0.

Due to negative drift (Key Formula 2), after kn time $\mathbb{E}\|S_{kn} - \frac{1}{q}\|^2 < \eta$.

Now we can use the contraction (Key Formula 1): If
$$t_n = kn + \frac{1}{2} \left(1 - \frac{\beta}{q}\right)^{-1} n \log n$$
Then $\mathbb{E}\|S_{t_n} - \frac{1}{q}\|^2 = O(n^{-1})$

By bounding the variance we get $\|S_{t_n} - \frac{1}{q}\| = O\left(n^{-1/2}\right)$ with as high probability as needed.

Introduce a coupling between this chain and one starting from π such that they coincide after an additional γn time with probability tending to 1 as $\gamma \to \infty$.

Use a **Coupling time** argument to bound the distance from stationarity - For any Markov chain with stationary distribution π:

$$d(t) \leq \sup_{x_0} \mathbb{P}^{x_0, \pi} (\tau_{couple} > t)$$

where $\mathbb{P}^{x_0, \pi}$ is any coupling of two copies of the Markov chain, starting from x_0 and π and τ_{couple} is the first time the two processes coincide.