Finite Connections for Supercritical Bernoulli Bond Percolation in 2D

M. Campanino1 \quad D. Ioffe2 \quad O. Louidor3

1Università di Bologna (Italy)
2Technion (Israel)
3Courant (New York University)

Courant Probability Seminar, 11/6/2009
Outline

Introduction
 Percolation on \mathbb{Z}^d
 Logarithmic Asymptotics of Connectivities
 Sharp Asymptotics of Connectivities

Sketch of Proof
 Setup
 Geometry of Finite Connections
 The Structure of a Cluster
 Asymptotics for No Intersection of Two Decorated RWs

Summary
Outline

Introduction
Percolation on \mathbb{Z}^d
Logarithmic Asymptotics ofConnectivities
Sharp Asymptotics of Connectivities

Sketch of Proof
Setup
Geometry of Finite Connections
The Structure of a Cluster
Asymptotics for No Intersection of Two Decorated RWs

Summary
Percolation

- Take $G = (\mathbb{Z}^d, \mathcal{E}^d)$ - the integer lattice with nearest neighbor edges.
- Open each edge with probability $p \in [0, 1]$ independently.
- Let \mathbb{B}_p be the underlying measure.

Theorem (Broadbent, Hammersley 1957)

For all $d > 2$, there exists $p_c(d) \in (0, 1)$ such that:

$$\mathbb{B}_p(0 \leftrightarrow \infty) = \begin{cases} 0 & \text{if } p < p_c(d) \\ \theta(p) > 0 & \text{if } p > p_c(d) \end{cases}$$
Basic Picture

Sub-critical density $p < p_c(d)$:
- All clusters (connected components) are finite.
- Radii of clusters have exponentially decaying distributions:
 \[
 \exists \xi_p \in (0, \infty) : \mathbb{P}_p(0 \leftrightarrow \partial B(R)) \approx e^{-\xi_p R}.
 \]
 Russo-Menshikov (86), Barskey-Aizenman (87).

Super-critical density $p > p_c(d)$:
- Unique infinite cluster \mathbb{B}_p-a.s.
- Radii of finite clusters have exponentially decaying distributions:
 \[
 \exists \zeta_p \in (0, \infty) : \mathbb{P}_p(\infty \leftrightarrow 0 \leftrightarrow \partial B(R)) \approx e^{-\zeta_p R}.
 \]
 Chayes2-Newman (87), C2-Grimmett-Kesten-Schonmann (89).
Connectivities

The point-to-point connectivity function is defined as:

\[\tau_p(x, y) = \mathbb{B}_p(x \leftrightarrow y) ; \quad x, y \in \mathbb{Z}^d. \]
Connectivities

The point-to-point connectivity function is defined as:

$$\tau_p(x, y) = \mathbb{B}_p(x \leftrightarrow y) ; \quad x, y \in \mathbb{Z}^d.$$

Sub-critical case:
Subadditivity (via FKG of \mathbb{B}_p) and exponential decay of cluster radius distribution imply:

Theorem

Assume $p < p_c(d)$. Then, for all $x \in \mathbb{R}^d$:

$$\xi_p(x) = \lim_{n \to \infty} -\frac{1}{n} \log \tau_p(0, \lfloor nx \rfloor)$$

is well-defined, convex and homogeneous function that is strictly positive on $\mathbb{R}^d \setminus \{0\}$.

In other words ξ_p is a norm on \mathbb{R}^d, called the inverse correlation norm.
Connectivities - cont’d

Super-critical case:
FKG gives a uniform positive lower bound for all $x, y \in \mathbb{Z}^d$:

$$\mathbb{B}_p(x \leftrightarrow y) \geq \mathbb{B}_p(x \leftrightarrow \infty) \mathbb{B}_p(y \leftrightarrow \infty) = \theta^2(p) > 0.$$
Connectivities - cont’d

Super-critical case:
FKG gives a uniform positive lower bound for all \(x, y \in \mathbb{Z}^d:\)

\[
\mathbb{B}_p(x \leftrightarrow y) \geq \mathbb{B}_p(x \leftrightarrow \infty) \mathbb{B}_p(y \leftrightarrow \infty) = \theta^2(p) > 0.
\]

Therefore, define the finite (truncated) connectivity function:

\[
\tau^f_p(x, y) = \mathbb{B}_p(x \xrightarrow{f} y) = \mathbb{B}_p(\infty \leftrightarrow x \leftrightarrow y) ; \quad x, y \in \mathbb{Z}^d.
\]
Connectivities - cont’d

Super-critical case:
FKG gives a uniform positive lower bound for all $x, y \in \mathbb{Z}^d$:

$$B_p(x \leftrightarrow y) \geq B_p(x \leftrightarrow \infty)B_p(y \leftrightarrow \infty) = \theta^2(p) > 0.$$

Therefore, define the finite (truncated) connectivity function:

$$\tau_p^f(x, y) = B_p(x \leftrightarrow y) = B_p(\infty \leftrightarrow x \leftrightarrow y) ; \quad x, y \in \mathbb{Z}^d.$$

Theorem

Assume $p \notin \{0, p_c(d), 1\}$. Then, for all $x \in \mathbb{R}^d$:

$$\zeta_p(x) = \lim_{n \to \infty} -\frac{1}{n} \log \tau_p^f(0, [nx])$$

is well-defined, homogeneous and strictly positive on $\mathbb{R}^d \setminus \{0\}$.

This is the finite (truncated) inverse correlation function.
Logarithmic Scale Asymptotics

In other words:

\[B_p(x \leftrightarrow y) \approx e^{-\xi_p(\theta) \|y-x\|_2} \quad \text{and} \quad B_p(x \leftrightarrow^f y) \approx e^{-\zeta_p(\theta) \|y-x\|_2} \]

for all \(x, y \in \mathbb{Z}^d \) as \(y - x \to \infty \), where \(\theta = (x - y)/\|x - y\|_2 \).
Logarithmic Scale Asymptotics

In other words:

\[\mathbb{B}_p(x \leftrightarrow y) \approx e^{-\xi_p(\theta)\|y-x\|_2} \quad \text{and} \quad \mathbb{B}_p(x \xleftarrow{f} y) \approx e^{-\zeta_p(\theta)\|y-x\|_2} \]

for all \(x, y \in \mathbb{Z}^d \) as \(y - x \to \infty \), where \(\theta = (x - y)/\|x - y\|_2 \).

Some relations:

- \(\xi_p = \xi_p(e_1) \). \(\zeta_p = \zeta_p(e_1) \).
- If \(d = 2 \), \(p > p_c(2) = \frac{1}{2} \) then \(\zeta_p = 2\xi_{1-p} \).

 Chayes-Chayes-Grimmett-Kesten-Schonmann (89).
Logarithmic Scale Asymptotics

In other words:

\[B_p(x \leftrightarrow y) \approx e^{-\xi_p(\theta)\|y-x\|_2} \quad \text{and} \quad B_p(x \xleftarrow{f} y) \approx e^{-\zeta_p(\theta)\|y-x\|_2} \]

for all \(x, y \in \mathbb{Z}^d \) as \(y - x \to \infty \), where \(\theta = (x - y)/\|x - y\|_2 \).

Some relations:

- \(\xi_p = \xi_p(e_1) \) \cdot \(\zeta_p = \zeta_p(e_1) \).
- If \(d = 2 \), \(p > p_c(2) = \frac{1}{2} \) then \(\zeta_p = 2\xi_{1-p} \).

Chayes-Chayes-Grimmett-Kesten-Schonmann (89).

Want sharp asymptotics:

\[B_p(x \leftrightarrow y) \sim ? \quad \text{and} \quad B_p(x \xleftarrow{f} y) \sim ? \]
For all $d \geq 2$, $p < p_c(d)$, $x, y \in \mathbb{Z}^d$:

$$\mathbb{B}_p(x \leftrightarrow y) \sim A_p(\theta) \|y - x\|_2^{-(d-1)/2} e^{-\xi_p(\theta)\|y - x\|_2}$$

as $y - x \to \infty$.

- Campanino-Chayes-Chayes (88) ($y - x$ is on the axes).
- Campanino-Ioffe (02) (all $y - x$).

With the Gaussian correction this is called **Ornstein-Zernike Behavior**. After the work of L.Ornstein and F.Zernike.
Sharp Asymptotics - Supercritical Case

\(d \geq 3:\)
For all \(p > p_c(d)\), \(x, y \in \mathbb{Z}^d\), it is expected:

\[
B_p(x \xleftarrow{f} y) \sim \tilde{A}_p(\theta) \|y - x\|_2^{-(d-1)/2} e^{-\zeta_p(\theta)\|y - x\|_2} \text{ as } y - x \to \infty.
\]

Verified for \(p \gg p_c(d)\) and \(y - x\) on axes. Braga-Procacci-Sanchis (04).
Sharp Asymptotics - Supercritical Case

\[d \geq 3: \]
For all \(p > p_c(d) \), \(x, y \in \mathbb{Z}^d \), it is expected:

\[
\mathbb{B}_p(x \leftrightarrow y) \sim \tilde{A}_p(\theta) \| y - x \|_2^{-(d-1)/2} e^{-\zeta_p(\theta) \| y - x \|_2} \quad \text{as } y - x \to \infty.
\]

Verified for \(p \gg p_c(d) \) and \(y - x \) on axes. Braga-Procacci-Sanchis (04).

\[d = 2: \]
Sharp Asymptotics - Supercritical Case

\(d \geq 3:\) For all \(p > p_c(d), x, y \in \mathbb{Z}^d,\) it is expected:

\[
\mathbb{B}_p(x \xleftarrow{\mathcal{F}} y) \sim \tilde{A}_p(\theta) \|y - x\|_2^{-(d-1)/2} e^{-\zeta_p(\theta) \|y - x\|_2} \text{ as } y - x \to \infty.
\]

Verified for \(p \gg p_c(d)\) and \(y - x\) on axes. Braga-Procacci-Sanchis (04).

\(d = 2:\)

\[?\]
A Related Model - Nearest-Neighbor Ising
A Related Model - Nearest-Neighbor Ising

Exactly solvable in \(d = 2 \) (Onsager (44)).

Explicit formulas for (truncated) \(k \)-point correlation functions at all temperatures (Wu, McCoy, Tracy, Potts, Ward, Montroll (’70)).

Theorem (Cheng-Wu, Wu)

If \(\beta < \beta_c(2) \) then

\[
\langle \sigma_x; \sigma_y \rangle_\beta \triangleq \langle \sigma_x \sigma_y \rangle_\beta \sim A_\beta(\theta) \|y - x\|_2^{-1/2} e^{-\xi_\beta(\theta) \|y - x\|_2}
\]

and if \(\beta > \beta_c(2) \) then:

\[
\langle \sigma_x; \sigma_y \rangle_\beta^T \triangleq \langle \sigma_x \sigma_y \rangle_\beta - \langle \sigma_x \rangle_\beta \langle \sigma_y \rangle_\beta \sim \tilde{A}_\beta(\theta) \|y - x\|_2^{-2} e^{-\zeta_\beta(\theta) \|y - x\|_2}
\]

for all \(x, y \in \mathbb{Z}^2 \) as \(y - x \to \infty \).

No OZ Behavior in \(d = 2 \) below the critical temperature!
Sharp Asymptotics - Supercritical Case

\(d \geq 3 \):
For all \(p > p_c(d) \), \(x, y \in \mathbb{Z}^d \), it is expected:

\[
\mathbb{B}_p(x \leftrightarrow y) \sim \widetilde{A}_p(\theta) \|y - x\|^{-(d-1)/2} e^{-\zeta_p(\theta)\|y-x\|_2} \quad \text{as } y - x \to \infty.
\]

Verified for \(p \gg p_c(d) \) and \(y - x \) on axes. Braga-Procacci-Sanchis (04).

\(d = 2 \):

?
Sharp Asymptotics - Supercritical Case

$d \geq 3$:
For all $p > p_c(d)$, $x, y \in \mathbb{Z}^d$, it is expected:

$$\mathbb{B}_p(x \xleftarrow{f} y) \sim A_p(\theta) \|y - x\|_2^{-(d-1)/2} e^{-\zeta_p(\theta) \|y-x\|_2} \quad \text{as } y - x \to \infty.$$

Verified for $p \gg p_c(d)$ and $y - x$ on axes. Braga-Procacci-Sanchis (04).

$d = 2$:

Theorem (Campanino, Ioffe, L. (09))

For all $p > p_c(2) = 1/2$, $x, y \in \mathbb{Z}^2$:

$$\mathbb{B}_p(x \xleftarrow{f} y) \sim \tilde{A}_p(\theta) \|y - x\|_2^{-2} e^{-\zeta_p(\theta) \|y-x\|_2} \quad \text{as } y - x \to \infty.$$
Outline

Introduction
Percolation on \mathbb{Z}^d
Logarithmic Asymptotics of Connectivities
Sharp Asymptotics of Connectivities

Sketch of Proof
Setup
Geometry of Finite Connections
The Structure of a Cluster
Asymptotics for No Intersection of Two Decorated RWs

Summary
Dual lattice.

- In $d = 2$ there is an isomorphic dual \mathbb{Z}^2_*.
- Set: b^* is open $\iff b$ is close.
- The dual model is Percolation with $p^* = 1 - p$.
- We assume $p < p_c(2)$ and find $\mathbb{B}_p(x^* \leftrightarrow y^*)$.
- However, we’ll express this event mainly using direct bonds.
- For simplicity: $x^* = 0^*$, $y^* = 0^* + (N, 0) \equiv N^*$.
Setup

Dual lattice.

- In $d = 2$ there is an isomorphic dual \mathbb{Z}^2_*.
- Set: b^* is open $\iff b$ is close.
- The dual model is Percolation with $p^* = 1 - p$.
- We assume $p < p_c(2)$ and find $\mathbb{B}_p(x^* \leftrightarrow y^*)$.
- However, we’ll express this event mainly using direct bonds.
- For simplicity: $x^* = 0^*$, $y^* = 0^* + (N, 0) \triangleq N^*$.

A bit of notation.

- $\text{Cl}_{m,r}(x, y)$ - The (possibly empty) cluster that contains x, y and uses only edges in the strip $[m, r] \times \mathbb{Z}$.
Geometry of Finite Connections

\[\{0^* \xrightarrow{f} x_N^* \} = \{0^* \leftrightarrow x_N^* \} \cap \{ \exists \text{ direct loop } \gamma_N \text{ around } 0^* \text{ and } x_N^* \} . \]
Decomposition of Finite Connection Event

Idea:
Find a geometric decomposition which is both unique and the sets of bonds that define each pieces are disjoint.
Decomposition of Finite Connection Event

Idea:
Find a geometric decomposition which is both unique and the sets of bonds that define each pieces are disjoint.

In our case:
Let c_N be the inner most loop that contains $Cl(0^*, N^*)$.

Cut along the left-most line H_m and right-most line H_{N-r} that intersect c_N exactly twice:

$$c_N \cap H_m = \{x, v\}, \quad c_N \cap H_{N-r} = \{u, y\}$$

Get 3 pieces: $L([v, x]), A([v, x], [u, y]), R([u, y])$.
Decomposition - cont’d

\[B_p \left(0^* \leftrightarrow x_N^* \right) \]
Introduction

Sketch of Proof

Summary

Decomposition - cont’d

\[
\mathbb{B}_p \left(0^* \xrightarrow{f} x_N^* \right) = \sum_{x,v,y,u} \mathbb{B}_p \left(\mathcal{I}([v, x], [u, y]) \right) + \mathbb{B}_p \left(\mathcal{I}(\emptyset) \right)
\]
Decomposition - cont’d

\[
\mathbb{B}_p \left(0^* \xrightarrow{f} x_N^* \right) = \sum_{x,v,y,u} \mathbb{B}_p \left(\mathcal{I}([v, x], [u, y]) \right) + \mathbb{B}_p \left(\mathcal{I}(\emptyset) \right)
\]

\[
\mathbb{B}_p \left(\mathcal{L}([v, x]) \right) \mathbb{B}_p \left(\mathcal{A}([v, x], [u, y]) \right) \mathbb{B}_p \left(\mathcal{R}([u, y]) \right) + \mathbb{B}_p \left(\mathcal{I}(\emptyset) \right)
\]
Decomposition - cont’d

In fact:

\[
\mathbb{B}_p \left(0^* \xrightarrow{f} x_N^* \right) \sim \sum_{|x|, |v| \lesssim \log N} \mathbb{B}_p (\mathcal{L}([v, x])) \mathbb{B}_p (\mathcal{A}([v, x], [u, y])) \mathbb{B}_p (\mathcal{R}([u, y]))
\]

and, modulo the exponential decay, the asymptotics will come from

\[
\mathbb{B}_p (\mathcal{A}([v, x], [u, y]))
\]
Two Disjoint Boundary Clusters

\[A([v, x], [u, y]) = \{ \ldots \}, \]

\[x \leftrightarrow y, \ v \leftrightarrow u, \]

\[\text{Cl}_{m,N-r}(v, u) \cap \text{Cl}_{m,N-r}(x, y) = \emptyset \]
Two Disjoint Boundary Clusters

\[A([v, x], [u, y]) = \{ \ldots , \]
\[x \leftrightarrow y, v \leftrightarrow u, \]
\[\text{Cl}_{m,N-r}(v, u) \cap \text{Cl}_{m,N-r}(x, y) = \emptyset \} \]

\[A([v, x], [u, y]) = \{ \ldots , \]
\[x \leftrightarrow y, v \leftrightarrow u, \]
\[\text{Cl}_{m,N-r}(v, u) \cap \gamma^{up}(\text{Cl}_{m,N-r}(x, y)) = \emptyset \} \]
Two Disjoint Boundary Clusters

\[A([v, x], [u, y]) = \{ \ldots, x \leftrightarrow y, v \leftrightarrow u, \quad Cl_{m,N-r}(v, u) \cap Cl_{m,N-r}(x, y) = \emptyset \} \]

\[A([v, x], [u, y]) = \{ \ldots, x \leftrightarrow y, v \leftrightarrow u, \quad Cl_{m,N-r}(v, u) \cap \gamma_{up}(Cl_{m,N-r}(x, y)) = \emptyset \} \]

Exploration of \(Cl_{m,N-r}(v, u) \) and \(\gamma_{up}(Cl_{m,N-r}(x, y)) \) uses different bonds.
Two Disjoint Boundary Clusters

\[A([v, x], [u, y]) = \{ \ldots \}, \]
\[x \leftrightarrow y, \ v \leftrightarrow u, \]
\[\text{Cl}_{m,N-r}(v, u) \cap \text{Cl}_{m,N-r}(x, y) = \emptyset \} \]

\[A([v, x], [u, y]) = \{ \ldots \}, \]
\[x \leftrightarrow y, \ v \leftrightarrow u, \]
\[\text{Cl}_{m,N-r}(v, u) \cap \gamma^{up}(\text{Cl}_{m,N-r}(x, y)) = \emptyset \} \]

Exploration of \(\text{Cl}_{m,N-r}(v, u) \)
and \(\gamma^{up}(\text{Cl}_{m,N-r}(x, y)) \) uses
different bonds.

\[\implies \text{We can sample the clusters independently}: \]
\[\mathbb{B}_p(A(\ldots)) = \bigotimes \mathbb{B}_p(A(\ldots)) \]
The Structure of One Cluster

We would like to have some geometric decomposition of a cluster Cl(x, y).
The Structure of One Cluster

We would like to have some geometric decomposition of a cluster $\mathcal{C}(x, y)$.

Assume $x = 0$, $y = (N, 0)$.
The Structure of One Cluster

We would like to have some geometric decomposition of a cluster \(\text{Cl}(x, y) \).

Assume \(x = 0, y = (N, 0) \).

Definition: \(\mathcal{H}_m \) is an \(\alpha \)-cone-cut-line and \(z \in \mathcal{H}_m \) is an \(\alpha \)-cone-cut-point of \(\text{Cl}(x, y) \) if

\[
\text{Cl}(x, y) \subseteq (z - C_\alpha) \cup (z + C_\alpha).
\]

where: \(C_\alpha = \{ x = (t, x) : |x| \leq \alpha t \} \).
The Structure of One Cluster

We would like to have some geometric decomposition of a cluster \(\text{Cl}(x, y) \).

Assume \(x = 0, y = (N, 0) \).

Definition: \(\mathcal{H}_m \) is an \(\alpha \)-cone-cut-line and \(z \in \mathcal{H}_m \) is an \(\alpha \)-cone-cut-point of \(\text{Cl}(x, y) \) if

\[
\text{Cl}(x, y) \subseteq (z - C_\alpha) \cup (z + C_\alpha).
\]

where: \(C_\alpha = \{x = (t, x) : |x| \leq \alpha t \} \).

There is a well-defined irreducible decomposition of \(\text{Cl}(x, y) \) along cone-cut-lines:
Cluster Decomposition - An Illustration

\[x = 0 \quad y = (\mathbb{N}, 0) \]
Cluster Decomposition - An Illustration
Cluster Decomposition - An Illustration

\[x = 0 \quad y = (N, 0) \]
Cluster Decomposition - An Illustration
Cluster Decomposition - An Illustration
Cluster Decomposition - cont’d

Let \(\mathcal{F} \) be the set of all pieces that can appear between any two succeeding cone-cut-points in any decomposition.
Cluster Decomposition - cont’d

Let \mathcal{F} be the set of all pieces that can appear between any two succeeding cone-cut-points in any decomposition.

A piece $\Gamma \in \mathcal{F}$ comes with an offset vector $\sigma = \sigma(\Gamma)$, which is the difference between its left and right cut-points.
Cluster Decomposition - cont’d

Let \mathcal{F} be the set of all pieces that can appear between any two succeeding cone-cut-points in any decomposition.

A piece $\Gamma \in \mathcal{F}$ comes with an offset vector $\sigma = \sigma(\Gamma)$, which is the difference between its left and right cut-points.

Similarly, define \mathcal{F}_b and \mathcal{F}_f for all possible initial and final pieces.
Cluster Decomposition - cont’d

Then,

\[B_p(\text{Cl}(x, y) \neq \emptyset) = B_p(\text{no cone-cut-lines}) + \sum_{\Gamma_b} B_p(\{\Gamma_b\}) B_p(\{\Gamma_1\}) \cdots B_p(\{\Gamma_n\}) B_p(\{\Gamma_f\}) \]

where the sum is over all:

- \(\Gamma_b \in F_b \),
- \(\Gamma_i \in F \) for \(i = 1, \ldots, n \) and all \(n \),
- \(\Gamma_f \in F_f \),

such that: \(y = x + \sigma_b + \sigma_1 + \cdots + \sigma_n + \sigma_f \).
Cluster Decomposition - cont’d

Then,

\[\mathbb{B}_p(\text{Cl}(x, y) \neq \emptyset) = \mathbb{B}_p(\text{no cone-cut-lines}) + \sum_{\Gamma} \mathbb{B}_p(\{\Gamma_b\})\mathbb{B}_p(\{\Gamma_1\}) \cdots \mathbb{B}_p(\{\Gamma_n\})\mathbb{B}_p(\{\Gamma_f\}) \]

where the sum is over all:

- \(\Gamma_b \in \mathcal{F}_b \),
- \(\Gamma_i \in \mathcal{F} \) for \(i = 1, \ldots, n \) and all \(n \),
- \(\Gamma_f \in \mathcal{F}_f \),

such that: \(y = x + \sigma_b + \sigma_1 + \cdots + \sigma_n + \sigma_f \).

In fact,

\[\mathbb{B}_p(\text{Cl}(x, y) \neq \emptyset) \sim \sum_{\Gamma} \mathbb{B}_p(\{\Gamma_b\})\mathbb{B}_p(\{\Gamma_1\}) \cdots \mathbb{B}_p(\{\Gamma_n\})\mathbb{B}_p(\{\Gamma_f\}) \]
Growing a cluster

We can grow $\text{Cl}(x, y)$ iteratively:

1. Draw $\Gamma_b \in \mathcal{F}_b$ w.p. $\mathbb{B}_p(\{\Gamma_b\})$.
 Draw $\Gamma_f \in \mathcal{F}_f$ w.p. $\mathbb{B}_p(\{\Gamma_f\})$.

2. Set $C_0 = \emptyset$, $S_0 = 0$.

3. At each step m:
 3.1 Draw $\Gamma_m \in \mathcal{F}$ w.p. $\mathbb{B}_p(\{\Gamma_m\})$.
 3.2 $C_m = C_{m-1} \lor \Gamma_m$; $S_m = S_{m-1} + \sigma_m$.
 3.3 $C_{mbf}^m = \{x\} \lor \Gamma_b \lor C_m \lor \Gamma_f$.
 $S_{mbf}^m = x + \sigma_b + S_m + \sigma_f$.
Growing a cluster

We can grow $\text{CI}(x, y)$ iteratively:

1. Draw $\Gamma_b \in F_b$ w.p. $B_p(\{\Gamma_b\})$.
 Draw $\Gamma_f \in F_f$ w.p. $B_p(\{\Gamma_f\})$.

2. Set $C_0 = \emptyset$, $S_0 = 0$.

3. At each step m:
 3.1 Draw $\Gamma_m \in F$ w.p. $B_p(\{\Gamma_m\})$.
 3.2 $C_m = C_{m-1} \lor \Gamma_m$; $S_m = S_{m-1} + \sigma_m$.
 3.3 $C_{bf} = \{x\} \lor \Gamma_b \lor C_m \lor \Gamma_f$.
 $S_{bf} = x + \sigma_b + S_m + \sigma_f$.

If \tilde{P}_x is the measure for this decorated RW, then

$$B_p(\text{CI}(x, y) \neq \emptyset, \exists \text{cone-cut-lines}) = \tilde{P}_x(\exists n \text{ s.t. } S_{bf}^n = y).$$
Growing a Cluster - Illustration
Growing a Cluster - Illustration

\[x = 0 \quad y = (N, 0) \]
Growing a Cluster - Illustration

$\begin{aligned}
\sigma_b & \quad \sigma_1 \\
\Gamma_b & \quad \Gamma_1 \\
\sigma_2 & \quad \sigma_f \\
S_{2f}^{bf} & \quad C_2^{bf} \\
0 & \quad (N, 0)
\end{aligned}$
Growing a Cluster - Illustration

\[
x = 0 \\
y = (N, 0)
\]
Growing a Cluster - Illustration

\[x = 0 \quad y = (N, 0) \]
Normalizing Steps

\[\Gamma \] are not \textbf{properly} defined: \[\sum_{\Gamma \in \mathcal{F}} \mathbb{B}_p(\{\Gamma\}) < 1. \]
i.e. the random walk can \textbf{die}.
Normalizing Steps

\(\Gamma \) are not properly defined: \(\sum_{\Gamma \in \mathcal{F}} \mathbb{B}_p(\{\Gamma\}) < 1 \).
i.e. the random walk can die.

Tilt to make proper:

\[
\mathbb{P}(\Gamma = \gamma) = e^{K\langle \sigma(\gamma), e_1 \rangle} \tilde{\mathbb{P}}(\Gamma = \gamma).
\]
\[
\mathbb{P}(\Gamma_{b,f} = \gamma) = k_1 e^{K\langle \sigma(\gamma), e_1 \rangle} \tilde{\mathbb{P}}(\Gamma_{b,f} = \gamma).
\]
Normalizing Steps

Γ are not properly defined: \(\sum_{\Gamma \in \mathcal{F}} \mathbb{B}_p(\{\Gamma\}) < 1 \).
i.e. the random walk can die.

Tilt to make proper:

\[
\begin{align*}
\mathbb{P}(\Gamma = \gamma) &= e^{K \langle \sigma(\gamma), e_1 \rangle} \mathbb{P}(\Gamma = \gamma). \\
\mathbb{P}(\Gamma_{b,f} = \gamma) &= k_1 e^{K \langle \sigma(\gamma), e_1 \rangle} \mathbb{P}(\Gamma_{b,f} = \gamma).
\end{align*}
\]

\(K = \xi_p(e_1) \) !!
Normalizing Steps

\(\Gamma_\cdot\) are not properly defined: \(\sum_{\Gamma \in \mathcal{F}_\cdot} \mathbb{B}_p(\{\Gamma\}) < 1\).
i.e. the random walk can die.

Tilt to make proper:

\[
\begin{align*}
\mathbb{P}(\Gamma_\cdot = \gamma) &= e^{K\langle \sigma(\gamma), e_1 \rangle} \tilde{\mathbb{P}}(\Gamma_\cdot = \gamma), \\
\mathbb{P}(\Gamma_{b,f} = \gamma) &= k_1 e^{K\langle \sigma(\gamma), e_1 \rangle} \tilde{\mathbb{P}}(\Gamma_{b,f} = \gamma).
\end{align*}
\]

\(K = \xi_p(e_1)!!\)

Then:

\[
\mathbb{B}_p(\text{Cl}(x, y) \neq \emptyset) \sim Ke^{-\xi_p(e_1)\langle y-x, e_1 \rangle} \mathbb{P}_x(\exists n \text{ s.t } S_n^{bf} = y).
\]
Back to the Two Boundary Clusters

Thus,

$$\bigotimes \mathbb{B}_p(\mathcal{A}([v, x], [u, y])) \sim K e^{-2\xi_p(e_1)\langle y-x, e_1 \rangle} \times$$

$$\bigotimes \mathbb{P}_{x, v} \left(\exists n_1, n_2 \text{ s.t } S_{n_1}^{bf, 1} = y, S_{n_2}^{bf, 2} = u \text{ and } C_{n_1}^{bf, 1} \cap C_{n_2}^{bf, 2} = \emptyset \right),$$

where under $\bigotimes \mathbb{P}_{x, v}$ two decorated RWs: $C_{\bullet}^{bf, 1}$, $C_{\bullet}^{bf, 1}$ evolve independently starting from (x, v).

The prefactor will come, therefore, from the asymptotics of the probability of the RW event above.
Asymptotics of No Intersection

Let $N = \langle y - x, e_1 \rangle = \langle u - v, e_1 \rangle$. Then

Lemma

As $N \to \infty$, uniformly in $x, y, u, v \in D(N)$:

$$\otimes \mathbb{P}_{x,v} \left(\exists n_1, n_2 \text{ s.t } S_{n_1}^{bf,1} = y, S_{n_2}^{bf,2} = u \text{ and } C_{n_1}^{bf,1} \cap C_{n_2}^{bf,2} = \emptyset \right)$$

$$\sim U(x - v)U(y - u) \frac{1}{N^2}.$$

$U(\cdot)$ has polynomial growth.
Proof of Intersection Asymptotics

1. One (unbiased) RW staying positive:

\[\Pr_0(S_n = y, S_k > 0 \forall k) \sim \frac{U(y)}{n} \Pr_0(S_n = y) ; \ y \ll n^{-1/2} \]

Combinatorial proof by Alili-Doney (97).
Proof of Intersection Asymptotics

1. One (unbiased) RW staying positive:

\[\mathbb{P}_0(S_n = y, \ S_k > 0 \ \forall k) \sim \frac{U(y)}{n} \mathbb{P}_0(S_n = y) \quad ; \ y \ll n^{-1/2} \]

Combinatorial proof by Alili-Doney (97).

2. Starting from \(x > 0 \):

\[\mathbb{P}_x(S_n = y, \ S_k > 0 \ \forall k) \sim \frac{U(x)U(y)}{n} \mathbb{P}_x(S_n = y) \quad ; \ x, y \ll n^{-1/2} \]
Proof of Intersection Asymptotics

1. One (unbiased) RW staying positive:

\[P_0(S_n = y, S_k > 0 \forall k) \sim \frac{U(y)}{n} P_0(S_n = y) \quad ; \quad y \ll n^{-1/2} \]

Combinatorial proof by Alili-Doney (97).

2. Starting from \(x > 0 \):

\[P_x(S_n = y, S_k > 0 \forall k) \sim \frac{U(x)U(y)}{n} P_x(S_n = y) \quad ; \quad x, y \ll n^{-1/2} \]

3. Two independent RWs not intersecting:

\[\bigotimes P_{x,v}(S^1_n = y, S^2_n = u, S^1_k > S^2_k \forall k) \sim \frac{U(x-v)U(y-u)}{n} P_x(S_n = y)P_v(S_n = u) \quad ; \quad x, v, y, u \ll n^{-1/2} \]
Proof of Intersection Asymptotics - cont’d

4 Add random time steps:

\[\bigotimes \mathbb{P}_{(0,x),(0,v)} \left(\exists n_1, n_2 \text{ s.t. } S^1_{n_1} = (N, y), S^2_{n_2} = (N, u), S^1 \cap S^2 = \emptyset \right) \]

\[\sim \frac{U(x - v)U(y - u)}{N} \frac{1}{\sqrt{N}} \frac{1}{\sqrt{N}} \]

; \ x, v, y, u \ll N^{-1/2}
Proof of Intersection Asymptotics - cont’d

4 Add random time steps:

\[\otimes \mathbb{P}_{(0,x),(0,v)} \left(\exists n_1, n_2 \text{ s.t. } S^1_{n_1} = (N, y), S^2_{n_2} = (N, u), S^1_{n_1} \cap S^2_{n_2} = \emptyset \right) \]

\[\sim \frac{U(x - v)U(y - u)}{N} \frac{1}{\sqrt{N}} \frac{1}{\sqrt{N}} \]

; \quad x, v, y, u \ll N^{-1/2}

5 By entropic repulsion:

\[\mathbb{P}_{(0,x),(0,v)} \left(C^1_{n_1} \cap C^2_{n_2} = \emptyset \mid S^1_{n_1} \cap S^2_{n_2} = \emptyset, \ldots \right) \rightarrow \text{const} \]
Proof of Intersection Asymptotics - cont’d

4 Add random time steps:

\[\otimes P_{(0,x),(0,v)} \left(\exists n_1, n_2 \text{ s.t } S_{n_1}^1 = (N, y), S_{n_2}^2 = (N, u), S_1^1 \cap S_2^2 = \emptyset \right) \]
\[\sim \frac{U(x - v)U(y - u)}{N} \frac{1}{\sqrt{N}} \frac{1}{\sqrt{N}} \quad ; \quad x, v, y, u \ll N^{-1/2} \]

5 By entropic repulsion:

\[\mathbb{P}_{(0,x),(0,v)} \left(C_{n_1}^1 \cap C_{n_2}^2 = \emptyset \mid S_1^1 \cap S_2^2 = \emptyset, \ldots \right) \rightarrow \text{const} \]

6 Initial and final piece only change the constant:

\[\otimes P_{(0,x),(0,v)} \left(\exists n_1, n_2 \text{ s.t } S_{n_1}^{1,bf} = (N, y), S_{n_2}^{2,bf} = (N, u), C_{n_1}^{1,bf} \cap C_{n_2}^{2,bf} = \emptyset \right) \]
\[\sim \frac{U(x - v)U(y - u)}{N^2} \quad ; \quad x, v, y, u \ll N^{-1/2} \]
Outline

Introduction
Percolation on \mathbb{Z}^d
Logarithmic Asymptotics of Connectivities
Sharp Asymptotics of Connectivities

Sketch of Proof
Setup
Geometry of Finite Connections
The Structure of a Cluster
Asymptotics for No Intersection of Two Decorated RWs

Summary
Open Questions

- Do the same for 2D Random Cluster (FK) model ($q \neq 2$).
- Supercritical percolation on \mathbb{Z}^d for $d \geq 3$
 Show OZ behavior for finite connectivities in all directions and all $p > p_c(d)$.
Thank You

Thank you.