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Abstract

Proving the equivalence of successive (closely related) versions of a program has the

potential of being easier in practice than functional verification, although both prob-

lems are undecidable. There are two main reasons for this claim: it circumvents the

problem of specifying what the program should do, and in many cases it is com-

putationally easier. In this thesis we study theoretical and practical aspects of this

problem, which we call regression verification.

The thesis is divided into two parts. In the first part we propose several no-

tions of equivalence between programs, and corresponding proof rules in the style of

Hoare’s rule for recursive procedures. These rules enable us to prove the equivalence

of recursive and mutually recursive programs, and also have an advantage from the

perspective of the computational effort, since it allows us to decompose and abstract

the two programs. This method is sound but incomplete.

In the second part we describe a regression verification tool for C programs, based

on the above-mentioned rules, that we built on top of a software bounded model-

checker called CBMC.

vii
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1 General introduction

1.1 Regression vs. functional verification

In 2003 Tony Hoare declared a “grand challenge” to the computer science community

to build a verifying compiler, i.e., a compiler that proves that the input program is

functionally correct with respect to a given specification [20]. Quoting from a later

publication of Hoare and Misra regarding the nature of this challenge [21], “ ...the time

is ripe to embark on an international Grand Challenge project to construct a program

verifier that would use logical proof to give an automatic check of the correctness of

programs[...] the program verifier will be based on a sound and complete theory of

programming; they will be supported by a range of program construction and analysis

tools[...] The project will provide the scientific basis of a solution for many of the

problems of programming error ...”.

Regardless of the difficulty of building such a compiler (the problem is obviously

undecidable in general), a major problem in using it on a broad scale is the difficulty

of specifying what the program should do. Large parts of realistic programs are often

hard to specify beyond assertions of local properties. In many cases the process of

describing what a code segment should do is as difficult and at least as complicated

as the coding itself. Software testing is perhaps a good parallel which indicates what

can be expected to succeed in industry: high-level temporal property-based testing,

although by now supported by commercial tools such as Temporal-Rover[8], is of

very limited use. Industry typically attempts to circumvent the specification problem

with Regression Testing, which is probably the most popular testing method for gen-

eral computer programs. It is based on the idea of reasoning by induction: check an

initial version of the software when it is still very simple, and then check that a newer

version of the software produces the same output as the earlier one, given the same

inputs. If the result of this process is a counterexample, the user is asked to check

whether it is an error or a legitimate change. In the latter case the testing database

is updated with the new ‘correct’ output value. Regression Testing does not require a
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formal specification of the investigated system nor a deep understanding of the code,

which makes it highly suitable for accompanying the development process, especially

if it involves more than one programmer.

In this thesis we develop techniques for Regression Verification, namely techniques

for proving the equivalence of programs1, with focus on the case of two closely related

versions of the same code. The problem of program equivalence can be reduced to

one of functional verification of a single program which merges the two compared

programs, but this direct approach makes no use of the expected similarity of the

code. Program equivalence is undecidable (see [35], which examines conditions under

which the equivalence problem is undecidable) and no doubt a grand challenge in

its own right, but it is expected to be easier than building a program verifier as

envisioned by the grand challenge: First, there is no need for a formal specification,

other than pointing out which expressions should be evaluated to the same value in

the two versions of the program; Second, as we show in this thesis, there are various

abstraction and decomposition techniques that are applicable to equivalence checking

but not to functional verification2; Third, there are techniques that can make the

computation easier if a large part of the code has not changed between the two

compared versions.

What motivated us to study the general problem of equivalence, is that only in

the last few years tools for functional verification of realistic programs have been

developed and made available (tools such as SLAM [2],Blast [18], Magic [4] and

CBMC [22], to name a few). Such tools can serve as the underlying engine of a

regression verification tool. Indeed in this work we generate verification conditions

in the form of small C programs, and then discharge them with a C bounded model

checker called CBMC [22].

1There are different ways to define program equivalence. We dedicate Sect. 1.4 to this question.
2The same observation is well known in the hardware domain, where equivalence checking of

circuits is considered computationally easier in practice than model-checking.
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The tool CBMC. CBMC, developed by D. Kroening, supports most of the fea-

tures of ANSI-C. It requires from the user to define a bound k on the number of

iterations that each loop in a given ANSI-C program is taken, and a similar bound

on the depth of each recursion. This enables CBMC to symbolically characterize the

full set of possible executions restricted by these bounds, by a decidable formula f .

The existence of a solution to f ∧¬a, where a is a user defined assertion, implies the

existence of a path in the program that violates a. Otherwise, we say that CBMC

established the k-correctness of the checked assertions. Proving such k-equivalence

between programs is all that we need in our default setting, as our verification con-

ditions are in the form of programs without loops or recursive calls.

1.2 When can regression verification be useful?

A natural question to ask is whether proving equivalence is relevant in the context of

a real software development process, as in such a process the program is expected to

produce a different output after every revision. While this is in general true, consider

the following scenarios, all of which are targeted by our approach:

• Checking side-effects of new code. Suppose, for example, that from version 1.0

to version 1.1 a new flag was added, that changes the result of the computation.

It is desirable to prove that as long as this flag is turned off, the previous

functionality is maintained. The regression verification tool that we developed

in this thesis allows the user to express a condition (the inactivation of the

flag in this case) under which the two programs are expected to produce equal

outputs.

• Checking performance optimizations. After adding an optimization of the code

for performance purposes, it is desirable to verify that the two versions of the

code still produce the same output.

• Manual Re-factoring : Refactoring is a popular set of techniques for rewriting

existing code for various purposes. To quote Martin Fowler [13, 12], the founder
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int calc1(sum,y) {

if (y <= 0) return sum;

if (isSpecialDeal()) {

sum = sum * 1.02;

return calc1(sum, y-1);

}

else {

sum = sum * 1.04;

return calc1(sum, y-1);

}

}

int calc2(sum,y) {

if (y <= 0) return sum;

if (isSpecialDeal())

sum = sum * 1.02;

else

sum = sum * 1.04;

return calc2(sum, y-1);

}

Figure 1: A refactoring example.

of this field, ‘Refactoring is a disciplined technique for restructuring an existing

body of code, altering its internal structure without changing its external behav-

ior. Its heart is a series of small behavior preserving transformations. Each

transformation (called a ’refactoring’) does little, but a sequence of transforma-

tions can produce a significant restructuring. Since each refactoring is small,

it’s less likely to go wrong. The system is also kept fully working after each

small refactoring, reducing the chances that a system can get seriously broken

during the restructuring.’ Proof of the equivalence of the code before and after

refactoring, seems valuable in this case.

The following example demonstrates the need for proving equivalence of recursive

functions after an application of a single refactoring rule.

Example 1. The two equivalent programs in Figure 1 demonstrate the Consolidate

Duplicate Conditional Fragments refactoring rule. These recursive functions calculate

the value of a given number sum after y years, given that there is some annual interest,

which depends on whether there is a ‘special deal’. The fact that the two functions

return the same values given the same inputs, and that they mutually terminate (i.e.,

they both either terminate or not), can be proved with the rules introduced in this

thesis.
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A list of some of the refactoring rules that can be handled by our proposed rules

is given in Appendix B.

1.3 Related work

The idea of proving equivalence between programs is not new, and in fact preceded

the idea of functional verification.3 It is a rather old challenge in the theorem-proving

community (some recent examples include [3, 5, 24, 25, 26]). We are not aware of

such works that are targeted at programs that are mostly equal, which is the target of

regression verification, or of full mechanization. The theorem-proving works that we

have seen (including those cited here that are based on ACL2) are mostly concerned

with program equivalence as a case study for using proof techniques that are generic

(i.e., not specific for proving equivalence).

Attempts to build fully automatic proof engines for industrial programs concen-

trated so far, to the best of our knowledge, on very restricted cases. Feng and Hu

considered the problem of proving equivalence of embedded code [9, 10]. The main

technique used in this line of work (also see [6]) is to prove the equivalence of small

segments of the code which are loop-free. In such verification tasks methods that

were developed for equivalence checking of combinatorial circuits become relevant

(e.g., inserting cut-points in the case of [10]). Arons et al. [1] developed a tool in Intel

for proving the equivalence of two versions of microcode, with the goal of proving

backwards compatibility. The idea there is to compute symbolically the result of exe-

cuting the code in both programs (which is assumed to be loop free). The verification

condition is then a conjunction of these two symbolic paths and a condition that

enforces the equality between their respective results. Both cases, then, give solution

only to loop-free code.

Another relevant line of research is concerned with translation validation [30, 28,

29, 27, 36, 17, 32], the process of proving equivalence between a source and a target of

3In his 1969 paper about axiomatic basis for computer programming [19], Hoare points to previous
works from the late 50’s on axiomatic treatment of the problem of proving equivalence between
programs.
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a compiler or a code generator. The fact that the translation is mechanical allows the

verification methodology to rely on various patterns and restrictions on the generated

code. For example, translation validation for synchronous languages [30, 28, 29] relies

on the fact that the target C code is loop-free. The translation validation tool from

SDL to C by Haroud and Biere [17] is based on a variation of Floyd’s method [11]

for proving equivalence: it declares cutpoints in both programs (as in the original

Floyd’s method, there should be at least one cutpoint in each loop), maps them

between the two programs, and proves that two related cutpoints are equivalent with

respect to the ‘observable’ variables if they are equivalent in the preceding pair of

cutpoints. This method works in the boundary of a single function on each side and

does not support general programs (e.g. recursive programs). Yet another line of

research is proving the equivalence of a C program and its realization in a hardware

description language such as Verilog [22]. The Verilog design and the C program are

both ‘unrolled’ k times and compared with a bounded model-checker. Thus, the two

sides can be proven equal only up to a given depth (this is what we call later on

k-equivalence).

1.4 Notions of equivalence

We define six notions of equivalence between two programs P1 and P2. The third

notion refers to reactive programs, whereas the others to transformational programs.

1. Partial equivalence: Given the same inputs, any two terminating executions

of P1 and P2 return the same value.

2. Mutual termination: Given the same inputs, P1 terminates if and only if P2

terminates.

3. Reactive equivalence: Given the same inputs, P1 and P2 emit the same

output sequence.
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4. k-equivalence: Given the same inputs, every two executions of P1 and P2

where

• each loop iterates up to k times, and

• each recursive call is not deeper than k,

generate the same output.

5. Total equivalence: The two programs are partially equivalent and both ter-

minate.

6. Full equivalence: The two programs are partially equivalent and mutually

terminate.

Comments on this list:

• Only the fourth notion of equivalence in this list is decidable, assuming the

program variables range over finite domains.

• The third notion is targeted at reactive programs, although it is relevant to

terminating programs as well (in fact it generalizes the first two notions of

equivalence). It assumes that inputs are read and outputs are written during

the execution of the program.

• The fifth notion of equivalence resembles that of Bouge and Cachera’s [3].

• The definitions of ‘strong equivalence’ and ‘functional equivalence’ in [23] and [33],

respectively, are almost equivalent to our definition of full equivalence, with the

difference that they also require that the two programs have the same set of

variables.

Our tool attempts to prove equivalence following the first four definitions.
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1.5 The structure of the thesis

In Part I of the thesis (Sects. 2– 7) we describe three proof rules for checking the

first three notions of equivalence as described above, and prove their soundness.4 In

Part II of the thesis (Sects. 9 – 10) we describe the regression verification tool (RVT)

that we have developed for checking these rules in the context of C programs. Using

this tool we were able to prove the equivalence of several programs, which we list in

Sect. 9.5. We dedicate Sect. 10 to discussing future work and what still has to be

implemented in the tool in order for it to scale better and cover a larger set of realistic

examples.

A word of warning : there is a certain gap between the first and second part that

is related to the programming language: whereas the first part is described with a

simple programming language that we call Linear Programming-Language (LPL), the

second part is described in the context of C. In Sect. 9.1 we describe the restrictions

on the input C programs that are required in order to apply the method suggested

in the first part.

Another possible source of confusion is the use of the term ‘procedure’ and ‘func-

tion’. In the first part of the thesis we define the rules over procedures, so more than

one output is possible. We use ‘function’ in its mathematical sense when referring to

uninterpreted functions. And, finally, in the second part, we use the common term of

‘C functions’, but in fact those are procedures, as they do not necessarily terminate

nor necessarily return a value.

4These sections are taken almost verbatim from [15]
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2 Overview of the three rules

In this section we give an informal description of the rules. Sections 5 – 7 describe

these rules formally and prove their soundness. Let P1 and P2 be the two programs

that we wish to prove equivalent. Assume that there is a one-to-one mapping between

the procedures of P1 and P2 such that mapped procedures have the same prototype.5

If no such mapping is possible, it may be possible to reach such a mapping through

inlining, and if this is impossible then our rules are not applicable, at least not for

proving the equivalence of full programs.

1. The first rule, called (proc-p-eq), can help proving partial equivalence. The

rule is based on the following observation. Let F and G be two procedures

mapped to one another. Assume that all the mapped procedure calls in F

and G return the same values for equivalent arguments. Now suppose that

this assumption allows us to prove that F and G are partially equivalent. If

these assumptions are correct for every pair of mapped procedures, then we can

conclude that all mapped procedures are partially equivalent.

2. The second rule, called (m-term), can help proving mutual termination. The

rule is based on the following observation. If all paired procedures satisfy:

• Computational equivalence (e.g. prove by Rule 1), and

• the conditions under which they call each pair of mapped procedures are

equal, and

• the read arguments of the called procedures are the same when they are

called

then all paired procedures mutually terminate.

5We refer to procedures rather than functions from hereon. The prototype of a procedure is
the sequence of types of the procedure’s read and write arguments. In the context of LPL, the
programming language that we define for the first part of the thesis, there is only one type and
hence prototypes can be characterized by the number of arguments.
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3. The third rule, called (react-eq), can help proving that every two mapped

procedures are reactive-equivalent. Let F and G be such a mapped pair of

procedures. Reactive equivalence means that in every two subcomputations

through F and G that are input equivalent (this means that they read the same

sequence of inputs and are called with the same arguments), the sequence of

outputs is the same as well.

If all paired procedures satisfy:

• given the same arguments and the same input sequences, they return the

same values (this is similar to the first rule, the difference being that here

we also consider the inputs consumed by the procedure during its execu-

tion), and

• they consume the same number of inputs, and

• the interleaved sequence of procedure calls and values of output statements

inside the mapped procedures is the same (and the procedure calls are

made with the same arguments),

then all mapped procedures are reactive equivalent.

Checking all three rules can be automated. Assume that all loop constructs such as

“while” and “for” statements are converted to recursion (we describe this transforma-

tion later in Appendix C.1). The rules handle recursive procedures while decomposing

the verification task: specifically, the size of each verification condition is proportional

to the size of two individual procedures. Further, using the rules requires a decision

procedure for a restricted version of the underlying programming language, in which

procedures contain no loops or procedure calls. Under these modest requirements

several existing software verification tools for popular programming languages such

as C are complete. A good example of such a tool for ANSI-C is CBMC [22], which

translates code with a bounded number of loops and recursive calls (in our case, none)

to a propositional formula.
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The description of the rules and their proof of soundness refer to a simple pro-

gramming language called Linear Procedure Language (LPL), which we define in

Section 4, together with its operational semantics. In Sections 5, 6 and 7 we state the

three inference rules respectively and prove their soundness. Each rule is accompanied

with an example.

3 Preliminaries

3.1 Notation

Notation of sequences. An n-long sequence is denoted by 〈l0, . . . , ln−1〉 or by

〈li〉i∈{0,...,n−1}. If the sequence is infinite we write 〈li〉i∈{0,...}. Given two sequences

a = 〈ai〉i∈{0,...,n−1} and b = 〈bi〉i∈{0,...,m−1},

a · b

is their concatenation of length n+m.

We overload the equality sign (=) to denote sequence equivalence. Given two

finite sequences a and b

(a = b)⇔ (|a| = |b| ∧ ∀i ∈ {0, . . . , |a| − 1}. ai = bi) ,

where |a| and |b| denote the number of elements in a and b, respectively.

If both a and b are infinite then

(a = b)⇔ (∀i ≥ 0. ai = bi) ,

and if exactly one of {a, b} is infinite then a 6= b.

Parentheses and brackets We use a convention by which arguments of a function

are enclosed in parenthesis, as in f(e), when the function maps values within a single

domain. If it maps values between different domains we use brackets, as in f [e].

References to vector elements, for example, belong to the second group, as they map
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between indices and values in the domain of the vector. Angled brackets (〈·〉) are

used for both sequences as shown above, and for tuples.

3.2 Uninterpreted functions

Much of the work done in this thesis is based on the notion of uninterpreted functions.

Uninterpreted functions and their natural extension to uninterpreted procedures, are

useful for abstracting functions in verification conditions. No axiom is associated with

them other than the congruence axiom, which enforces functional consistency (i.e.,

for equal inputs, the function returns an equal value):

x1 = y1 ∧ · · · ∧ xn = yn
F (x1, . . . , xn) = F (y1, . . . , yn)

(Functional Congruence) , (3.1)

where F is an arbitrary function.

4 The programming language

To define the programming language we assume a set of procedure names Proc=

{p0, . . . , pm}, where p0 has a special role as the root procedure (the equivalent of

‘main’ in C). Let D be a domain that contains the constants true and false, and no

subtypes. Let OD be a set of operations (functions and predicates) over D. We define

a set of variables over this domain: V =
⋃
p∈Proc Vp, where Vp is the set of variables

of a procedure p. The sets Vp, p ∈ Proc are pairwise disjoint. For expression e over

D and V we denote by vars[e] the set of variables that appear in e.

The LPL language is modeled after PLW [14], but is different in various aspects.

For example, it does not contain loops and allows only procedure calls by value-return.

Definition 1 (Linear Procedure Language (LPL)). The linear procedure language

(LPL) is defined by the following grammar (lexical elements of LPL are in bold, and

S denotes Statement constructs):
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Program :: 〈procedure p(val arg-rp; ret arg-wp):Sp〉p∈Proc
S :: x := e | S;S | if B then S else S fi | if B then S fi |

call p(e;x) | return

where p ∈ Proc, e is an expression overOD, andB is a predicate overOD. arg-rp, arg-wp

are vectors of Vp variables called, respectively, read formal arguments and write for-

mal arguments, and are used in the body Sp of the procedure named p. In a procedure

call “call p(e;x)”, the expressions e are called the actual input arguments and x are

called the actual output variables. The following constraints are assumed:

1. The only variables that can appear in the procedure body Sp are from Vp.

2. For each procedure call “call p(e, x)” the lengths of e and x are equal to the

lengths of arg-rp and arg-wp, respectively.

3. return must appear at the end of any procedure body Sp (p ∈ Proc).

�

For simplicity LPL is defined so it does not permit global variables and iterative

expressions like while loops. Both of these syntactic restrictions do not constrain the

expressive power of the language: global variables can be passed as part of the list of

arguments of each procedure, and loops can be rewritten as recursive expressions.

Definition 2 (An LPL augmented by location labels). An LPL program augmented

with location labels is derived from an LPL program P by adding unique labels

before[S] and after[S] for each statement S, right before and right after S, respec-

tively. As an exception, for two composed statements S1 and S2 (i.e., S1;S2), we do

not dedicate a label for after[S1]; rather, we define after[S1] = before[S2]. �

Example 2. Consider the LPL program P at the left of Fig. 2, defined over the

domain Z∪{true, false} for which, among others, the operations +,−,= are well-

defined. The same program augmented with location labels appears on the right of the

same figure.
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procedure p1(val x; ret y):
z := x + 1;
y := x – 1;
return

procedure p0(val w; ret w):
if (w = 0) then

w := 1
else w := 2
fi;
call p1(w;w);
return

procedure p1(val x; ret y):
l1 z := x + 1;
l2 y := x – 1;
l3 return l4

procedure p0(val w; ret w):
l5 if (w = 0) then
l6 w := 1 l7
else l8 w := 2 l9

fi;
l10 call p1(w;w); l11

return l12

Figure 2: An LPL program ( left) and its augmented version ( right).

The partial order ≺ of the locations is any order which satisfies :

1. For any statement S, before[S] ≺ after[S].

2. For an if statement S : if B then S1 else S2 fi,

before[S] ≺ before[S1], before[S] ≺ before[S2], after[S1] ≺ after[S] and after[S2] ≺
after[S].

We denote the set of location labels in the body of procedure p ∈ Proc by PCp.

Together the set of all location labels is PC
.
=
⋃
p∈Proc PCp.

4.1 Operational semantics

A computation of a program P in LPL is a sequence of configurations. Each config-

uration C = 〈d,O, pc, σ〉 contains the following elements:

1. The natural number d is the depth of the stack at this configuration.

2. The function O : {0, . . . , d} 7→ Proc is the order of procedures in the stack at

this configuration.

3. pc = 〈pc0, pc1 . . . , pcd〉 is a vector of program location labels6 such that pc0 ∈
6pc can be thought of as a stack of program counters, hence the notation.



16

PC0 and for each call level i ∈ {1, . . . , d} pci ∈ PCO[i] (i.e., pci “points” into

the procedure body that is at the ith place in the stack).

4. The function σ : {0, . . . , d} × V 7→ D ∪ {nil} is a valuation of the variables V

of program P at this configuration. The value of variables which are not active

at the i-th call level is invalid i.e., for i ∈ {0, . . . , d}, if O[i] = p and v ∈ V \ Vp
then σ[〈i, v〉] = nil where nil 6∈ D denotes an invalid value.

A valuation is implicitly defined over a configuration. For an expression e over D
and V , we define the value of e in σ in the natural way, i.e., each variable evaluates

according to the procedure and the stack depth defined by the configuration. More

formally, for a configuration C = 〈d,O, pc, σ〉 and a variable x:

σ[x]
.
=

{
σ[〈d, x〉] if x ∈ Vp and p = O[d]

nil otherwise

This definition extends naturally to a vector of expressions.

When referring to a specific configuration C, we denote its elements d,O, pc, σ

with C.d, C.O,C.pc, C.σ[x] respectively.

For a valuation σ, expression e over D and V , levels i, j ∈ {0, . . . , d}, and a variable

x, we denote by σ[〈i, e〉|〈j, x〉] a valuation identical to σ other than the valuation of

x at level j, which is replaced with the valuation of e at level i. When the respective

levels are clear from the context, we may omit them from the notation.

Finally, we denote by σ|i a valuation σ restricted to level i, i.e., σ|i[v]
.
= σ[〈i, v〉]

(v ∈ V ).

For a configuration C = 〈d,O, pc, σ〉 we denote by current-label[C] the program

location label at the procedure that is topmost on the stack, i.e., current-label[C]
.
=

pcd.

Definition 3 (Initial and Terminal configurations in LPL). A configuration C =

〈d,O, pc, σ〉 with current-label[C] = before[Sp0 ] is called the initial configuration and

must satisfy d = 0 and O[0] = p0. A configuration with current-label[C] = after[Sp0 ]

and d = 0 is called the terminal configuration. �
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Definition 4 (Transition relation in LPL). Let ‘→’ be the least relation among

configurations which satisfies: if C → C ′, C = 〈d,O, pc, σ〉, C ′ = 〈d′, O′, pc′, σ′〉 then:

1. If current-label[C] = before[S] for some assign construct S = “x := e” then

d′ = d, O′ = O, pc′ = 〈pci〉i∈{0,...,d−1} · 〈after[S]〉, σ′ = σ[e|x].

2. If current-label[C] = before[S] for some construct

S = “if B then S1 else S2 fi”

then

d′ = d, O′ = O, pc′ = 〈pci〉i∈{0,...,d−1} · 〈labB〉, σ′ = σ

where

labB =

{
before[S1] if σ[B] = true

before[S2] if σ[B] = false

3. If current-label[C] = after[S1] or current-label[C] = after[S2] for some construct

S = “if B then S1 else S2 fi”

then

d′ = d, O′ = O, pc′ = 〈pci〉i∈{0,...,d−1} · 〈after[S]〉, σ′ = σ

4. If current-label[C] = before[S] for some call construct S = “call p(e;x)” then

d′ = d + 1, O′ = O · 〈p〉, pc′ = 〈pci〉i∈{0,...,d−1} · 〈after[S]〉 · 〈before[Sp]〉,
σ′ = σ[〈d, e1〉|〈d+ 1, (arg-rp)1〉] . . . [〈d, el〉|〈d+ 1, (arg-rp)l〉] where arg-rp is the

vector of formal read variables of procedure p and l is its length.

5. If current-label[C] = before[S] for some return construct S = “return” and

d > 0 then d′ = d − 1, O′ = 〈Oi〉i∈{1,...,d−1}, pc
′ = 〈pci〉i∈{0,...,d−1}, σ′ =

σ[〈d, (arg-wp)1〉|〈d−1, x1〉] . . . [〈d, (arg-wp)l〉|〈d−1, xl〉] where arg-wp is the vec-

tor of formal write variables of procedure p, l is its length, and x are the actual

output variables of the call statement immediately before pcd−1.
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6. If current-label[C] = before[S] for some return construct S = “return” and

d = 0 then d′ = 0, O′ = 〈p0〉, pc′ = 〈after[Sp0 ]〉 and σ′ = σ.

�

Note that the case of current-label[C] = before[S] for a construct S = S1;S2 is

always covered by one of the cases in the above definition.

Another thing to note is that all write arguments are copied to the actual variables

following a return statement. This solves possible problems that may occur if the

same variable appears twice in the list of write arguments.

4.2 Computations and subcomputations of LPL programs

A computation of a program P in LPL is a sequence of configurations C = 〈C0, C1, . . .〉
such that C0 is an initial configuration and for each i ≤ |C| − 1 we have Ci → Ci+1.

If the computation is finite then the last configuration must be terminal.

The proofs throughout this thesis will be based on the notion of subcomputations.

We distinguish between several types of subcomputations, as follows (an example will

be given after the definitions):

Definition 5 (Subcomputation at a level). A continuous subsequence of a computa-

tion is a subcomputation at level d if all its configurations have the same stack depth

d. �

Clearly every subcomputation at a level is finite.

Definition 6 (Maximal subcomputation at a level). A maximal subcomputation at

level d is a subcomputation at level d, such that the successor of its last configuration

has stack-depth different than d, or d = 0 and its last configuration is equal to

after[S0]. �

Definition 7 (Subcomputation from a level). A continuous subsequence of a com-

putation is a subcomputation from level d if its first configuration C0 has stack depth
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Figure 3: A computation through various stack levels. Each rise corresponds to a
procedure call, and each fall to a return statement.

d, current-label[C0] = before[Sp] for some procedure p and all its configurations have

a stack depth of at least d. �

Definition 8 (Maximal subcomputation from a level). A maximal subcomputation

from level d is a subcomputation from level d which is either

• infinite, or

• finite, and,

– if d > 0 the successor of its last configuration has stack-depth smaller than

d, and

– if d = 0, then its last configuration is equal to after[S0].

�

A finite maximal subcomputation is also called closed.

Example 3. In Fig. 3, each whole segment corresponds to a maximal subcomputation

at its respective stack level, e.g., segment 2 is a maximal subcomputation at level d+1,

the subsequence 8 – 11 is a finite (but not maximal) subcomputation from level d+ 1,

and the subsequence 2 – 4 is a maximal subcomputation from level d+ 1.

Let π be a computation and π′ a continuous subcomputation of π. We will use

the following notation to refer to different configurations in π ′:
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• first[π′] denotes the first configuration in π′.

• last[π′] denotes the last configuration in π′, in case π′ is finite.

• pred[π′] is the configuration in π for which pred[π ′]→ first[π′].

• succ[π′] is the configuration in π such that last[π ′]→ succ[π′].

4.3 An assumption about the programs we compare

Two procedures

procedure F (val arg-rF ; ret arg-wF ),

procedure G(val arg-rG; ret arg-wG)

are said to have an equivalent prototype if |arg-rF | = |arg-rG| and |arg-wF | =

|arg-wG|.
We will assume that the two LPL programs P1 and P2 that we compare have the

following property: |Proc[P1]| = |Proc[P2]|, and there is a 1-1 and onto mapping

mapf : Proc[P1] 7→ Proc[P2] such that if 〈F,G〉 ∈ mapf then F and G have an

equivalent prototype.

Programs that we wish to prove equivalent and do not fulfill this requirement, can

sometimes be brought to this state by applying inlining of procedures that can not

be mapped.

5 A proof rule for partial procedure equivalence

Given the operational semantics of LPL, we now proceed to define a proof rule for

the partial equivalence of two LPL procedures. The rule refers to finite computations

only. We delay the discussion on more general cases to Sections 6 and 7.

Our running example for this section will be the two programs in Fig. 4, which

compute recursively yet in different ways the GCD (Greatest Common Divisor) of

two positive integers. We would like to prove that when they are called with the

same inputs, they return the same result.
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procedure gcd1(val a,b; ret g):
if b = 0 then

g := a
else

a := a mod b;
l1 call gcd1(b, a; g) l3

fi;
return

procedure gcd2(val x,y; ret z):
z := x;
if y > 0 then

l2 call gcd2(y, z mod y; z)
l4

fi;
return

Figure 4: Two procedures to calculate GCD of two positive integers. For better
readability we only show the labels that we later refer to.

5.1 Definitions

We now define various terms and notations regarding subcomputations through pro-

cedure bodies. All of these terms refer to subcomputations that begin right before

the first statement in the procedure and end just before the return statement (of the

same procedure at the same level), and use the formal arguments of the procedure.

We will overload these terms, however, when referring to subcomputations that begin

right before the call statement to the same procedure and end right after it, and

consequently use the actual arguments of the procedure. This overloading will repeat

itself in future sections as well.

Definition 9 (Argument-equivalence of subcomputations with respect to proce-

dures). Given two procedures F ∈ Proc[P1] and G ∈ Proc[P2] such that 〈F,G〉 ∈
mapf , for any two computations π1 in P1 and π2 in P2, π′1 and π′2 are argument-

equivalent with respect to F and G if the following holds:

1. π′1 and π′2 are maximal subcomputations of π1 and π2 from some levels d1 and

d2 respectively,

2. current-label[first[π′1]] = before[F ] and current-label[first[π′2]] = before[G], and

3. first[π′1].σ[arg-rF ] = first[π′2].σ[arg-rG],

�
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We remind that global variables and static variables are not permitted in LPL

directly, assuming that those can always be sent as input arguments to the procedures.

Definition 10 (Partial computational equivalence of procedures). If for every argument-

equivalent finite subcomputations π′1 and π′2 (these are closed by definition) with

respect to two procedures F and G,

last[π′1].σ[arg-wF ] = last[π′2].σ[arg-wG]

then F and G are partially computationally equivalent. �

Denote by comp-equiv(F,G) the fact that F and G are partially computationally

equivalent. The computational equivalence is only partial because it does not consider

infinite computations. From hereon when we talk about computational equivalence

we mean partial computational equivalence.

Our proof rule uses uninterpreted procedures, which are useful for reasoning about

an abstract system. The only information that the decision procedure has about them

is that they are consistent, i.e., that given the same inputs, they produce the same

outputs. We still need a semantics for such procedures, in order to be able to define

subcomputations that go through them. In terms of the semantics, then, an unin-

terpreted procedure U is the same as an empty procedure in LPL (a procedure with

a single statement – return), other than the fact that it preserves the congruence

condition: For every two subcomputations π1 and π2 through U ,

first[π1].σ[arg-rU ] = first[π2].σ[arg-rU ]

→
last[π1].σ[arg-wU ] = last[π2].σ[arg-wU ] .

(5.1)

There are well known decision procedures for reasoning about formulas that in-

volve uninterpreted functions – see, for example, Shostak’s algorithm [34], and ac-

cordingly most theorem provers support them. Such algorithms can be easily adapted

to handle procedures rather than functions.
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(5.3.1) ∀〈F,G〉 ∈ mapf . {
(5.3.2) `LUP comp-equiv(FUP , GUP ) }

(5.3.3) ∀〈F,G〉 ∈ mapf . comp-equiv(F,G)
(proc-p-eq)

(5.3)

Figure 5: Rule (proc-p-eq): An inference rule for proving the partial equivalence of
procedures.

5.2 Rule (proc-p-eq)

Defining the proof rule requires one more definition.

Let UP be a mapping of the procedures in Proc[P1] ∪ Proc[P2] to respective

uninterpreted procedures, such that:

〈F,G〉 ∈ mapf ⇐⇒ UP(F ) = UP(G) , (5.2)

and such that each procedure is mapped to an uninterpreted procedure with an

equivalent prototype.

Definition 11 (Isolated procedure). The isolated version of a procedure F , denoted

FUP , is derived from F by replacing all of its procedure calls by calls to the corre-

sponding uninterpreted procedures, i.e., F UP .
= F [f ← UP(f)|f ∈ Proc[P ]]. �

For example, Fig. 6 presents an isolated version of the programs in Fig. 4.

Rule (proc-p-eq), appearing in Fig. 5, is based on the following observation.

Let F and G be two procedures such that 〈F,G〉 ∈ mapf . If assuming that all the

mapped procedure calls in F and G return the same values for equivalent arguments

enables us to prove that F and G are equivalent, then we can conclude that F and

G are equivalent.
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The rule assumes a proof system LUP. LUP is any sound proof system for a re-

stricted version of the programming language in which there are no calls to inter-

preted procedures, and hence, in particular, no recursion7, and it can reason about

uninterpreted procedures. LUP is not required to be complete, because (proc-p-eq)

is incomplete in any case. Nevertheless, completeness is desirable since it makes the

rule more useful.

Example 4. Following are two instantiations of rule (proc-p-eq).

• The two programs contain one recursive procedure each, called f and g such that

mapf = {〈f, g〉}.
`LUP comp-equiv(f [f ← UP(f)], g[g ← UP(g)])

comp-equiv(f, g)

Recall that f [f ← UP(f)] means that the call to f inside f is replaced with

a call to UP(f) (isolation). Also recall that by definition of mapf (see (5.2)),

UP(f) = UP(g).

• The two compared programs contain two mutually recursive procedures each,

f1, f2 and g1, g2 respectively, such that mapf = {〈f1, g1〉, 〈f2, g2〉}, and f1 calls

f2, f2 calls f1, g1 calls g2 and g2 calls g1.

`LUP comp-equiv(f1[f2 ← UP(f2)], g1[g2 ← UP(g2)]),

`LUP comp-equiv(f2[f1 ← UP(f1)], g2[g1 ← UP(g1)])

comp-equiv(f1, g1), comp-equiv(f2, g2)

Example 5. Consider once again the two programs in Fig. 4. There is only one pro-

cedure in each program, which we naturally map to one another. Let H be the unin-

terpreted procedure to which we map gcd1 and gcd2, i.e., H = UP(gcd1) = UP(gcd2).

Figure 6 presents the isolated programs.

7In LPL there are no loops, but in case (proc-p-eq) is applied to other languages, LUP is required
to handle a restricted version of the language with no procedure calls, recursion or loops. Indeed,
under this restriction there are sound and complete decision procedures for deciding the validity of
assertions over popular programming languages such as C, as was mentioned in the introduction.
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procedure gcd1(val a,b; ret
g):

if b = 0 then
g := a

else
a := a mod b;
call H(b, a; g)

fi;
return

procedure gcd2(val x,y; ret
z):

z := x;
if y > 0 then

call H(y, z mod y; z)

fi;
return

Figure 6: After isolation of the procedures, i.e., replacing their procedure calls with
calls to the uninterpreted procedure H.

To prove the computational equivalence of the two procedures, we need to first

translate them to formulas expressing their respective transition relations. A conve-

nient way to do so is to use Static Single Assignment (SSA) [7]. Briefly, this means

that in each assignment of the form x = exp; the left-hand side variable x is replaced

with a new variable, say x1. Any reference to x after this line and before x is poten-

tially assigned again, is replaced with the new variable x1 (recall that this is done in

a context of a program without loops). In addition, assignments are guarded accord-

ing to the control flow. After this transformation, the statements are conjoined: the

resulting equation represents the states of the original program. If a subcomputation

through a procedure is valid then it can be associated with an assignment that satisfies

the SSA form of this procedure.

The SSA form of gcd1 is

Tgcd1 =




a0 = a ∧
b0 = b ∧
b0 = 0→ g0 = a0 ∧
(b0 6= 0→ a1 = (a0 mod b0)) ∧ (b0 = 0→ a1 = a0) ∧
(b0 6= 0→ H(b0, a1; g1)) ∧ (b0 = 0→ g1 = g0) ∧
g = g1




. (5.4)
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The SSA form of gcd2 is

Tgcd2 =




x0 = x ∧
y0 = y ∧
z0 = x0 ∧
(y0 > 0→ H(y0, (z0 mod y0); z1)) ∧ (y0 ≤ 0→ z1 = z0) ∧
z = z1




. (5.5)

The premise of rule (proc-p-eq) requires proving computational equivalence (see

Definition 10), which in this case amounts to proving the validity of the following

formula over positive integers:

(a = x ∧ b = y ∧ Tgcd1 ∧ Tgcd2) → g = z . (5.6)

Many theorem provers can prove such formulas fully automatically, and hence estab-

lish the partial computational equivalence of gcd1 and gcd2.

It is important to note that while the premise refers to procedures that are isolated

from other procedures, the consequent refers to the original procedures. Hence, while

LUP is required to reason about executions of bounded length (the length of one

procedure body) the consequent refers to unbounded executions.

To conclude this section, let us mention that rule (proc-p-eq) is inspired by

Hoare’s rule for recursive procedures:

{p}call proc{q} `H {p}S{q}
{p}call proc{q} (REC)

(where S is the body of procedure proc). Indeed, both in this rule and in rule

(proc-p-eq), the premise requires to prove that the body of the procedure without

its recursive calls satisfies the pre-post condition relation that we wish to establish,

assuming the recursive calls already do so.
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5.3 Rule (proc-p-eq) is sound

Let π be a computation of some program P1. Each subcomputation π′ from level

d consists of a set of maximal subcomputations at level d, which are denoted by

in(π′, d), and a set of maximal subcomputations from level d+ 1, which are denoted

by from(π′, d+1). The members of these two sets of computations alternate in π ′. For

example, in the left drawing in Fig. 7, segments 2,4,8 are separate subcomputations

at level d+ 1, and segments 3, and 5–7 are subcomputations from level d+ 2.

Definition 12 (Stack-level tree). A stack-level tree of a maximal subcomputation π

from some level, is a tree in which each node at height d (d > 0) represents the set

of subcomputations at level d from the time the computation entered level d until it

returned to its calling procedure in level d−1. Node n′ is a child of a node n if and only

if it contains one subcomputation that is a continuation (in π) of a subcomputation

in n. �

Note that the root of a stack-level tree is the node that contains first[π] in one

of its subcomputations. The leafs are closed subcomputations from some level which

return without executing a procedure call. Also note that the subcomputations in a

node at level d are all part of the same closed subcomputation π ′ from level d (this

is exactly the set in(π′, d)).

The stack-level tree depth is the maximal length of a path from its root to some

leaf. This is also the maximal difference between the depth of the level of any of its

leafs and the level of its root. If the stack-level tree is not finite then its depth is

undefined.

Denote by d[n] the level of node n and by p[n] the procedure associated with this

node.

Example 6. Figure 7 demonstrates a subcomputation π from level d (left) and its

corresponding stack-level tree (upside down, in order to emphasize its correspondence

to the computation). The set in(π, d) = {1, 9} is represented by the root. Each rise in

the stack level is associated with a procedure call (in this case, calls to p1,p2,p4,p2),
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Figure 7: (left) A computation and its stack levels. The numbering on the horizontal
segments are for reference only. (right) The stack-level tree corresponding to the
computation on the left.

and each fall with a return statement. To the left of each node n in the tree, appears

the procedure p[n] (here we assumed that the computation entered level d due to a call

to a procedure p0). The depth of this stack-level tree is 4.

Theorem 1 (Soundness). If the proof system LUP is sound then the rule (proc-p-eq)

is sound.

Proof. By induction on the depth d of the stack-level tree. Since we consider only

finite computations, the stack-level trees are finite and their depths are well defined.

Let P1 and P2 be two programs in LPL, π1 and π2 closed subcomputations from some

levels in P1 and P2 respectively, t1 and t2 the stack-level trees of these computations,

n1 and n2 the root nodes of t1 and t2 respectively. Also, let F = p[n1] and G = p[n2]

where 〈F,G〉 ∈ mapf . Assume also that π1 and π2 are argument-equivalent with

respect to F and G.

Base: If both n1 and n2 are leafs in t1 and t2 then the conclusion is proven by

the premise of the rule without using the uninterpreted procedures. As π1 and π2

contain no calls to procedures, then they are also valid computations through F UP

and GUP , respectively. Therefore, by the soundness of the proof system LUP, π1 and

π2 must satisfy comp-equiv(F UP , GUP ) which entails the equality of arg-w values at

their ends. Therefore, π1 and π2 satisfy the condition in comp-equiv(F,G).
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Step: Assume the consequent (5.3.3) is true for all stack-level trees of depth at most

i. We prove the consequent for computations with stack-level trees t1 and t2 such that

at least one of them is of depth i+ 1.

1. Consider the computation π1. We construct a computation π′1 in FUP , which is

the same as π1 in the level of n1, with the following change. Each subcomputa-

tion of π1 at a deeper level caused by a call cF , is replaced by a subcomputation

through an uninterpreted procedure UP(callee[cF ]), which returns the same

value as returned by cF (where callee[cF ] is the procedure called in the call

statement cF ). In a similar way we construct a computation π ′2 in GUP corre-

sponding to π2.

The notations we use in this proof correspond to Fig. 8. Specifically,

A1 = first[π1], A′1 = first[π′1], A′2 = first[π′2], A2 = first[π2],

B1 = last[π1], B′1 = last[π′1], B′2 = last[π′2], B2 = last[π2] .

2. As π1 and π2 are argument-equivalent we have

A1.σ[arg-rF ] = A2.σ[arg-rG] .

By definition,

A′1.σ[arg-rF ] = A1.σ[arg-rF ]

and

A′2.σ[arg-rG] = A2.σ[arg-rG] .

By transitivity of equality A′1.σ[arg-rF ] = A′2.σ[arg-rG].
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A2

A′2

A′1

A1 B1

B′1

B′2

B2

π2

π′2

π′1

π1

arg-r arg-w

Figure 8: A diagram for the proof of Theorem 1. Dotted lines indicate an equivalence
(either that we assume as a premise or that we need to prove) in the argument that
labels the line. We do not write all labels to avoid congestion – see more details in the
proof. π1 is a subcomputation through F . π′1 is the the corresponding subcomputation
through FUP , the isolated version of F . The same applies to π2 and π′2 with respect
to G. The induction step shows that if the read arguments are the same in A.1 and
A.2, then the write arguments have equal values in B.1 and B.2.

3. We now prove that the subcomputations π ′1 and π′2 are valid computations

through FUP and GUP . As π′1 and π′2 differ from π1 and π2 only by subcomputa-

tions through uninterpreted procedures (that replace calls to other procedures),

we need to check that they satisfy the congruence condition, as stated in (5.1).

Other parts of π′1 and π′2 are valid because π1 and π2 are valid subcomputations.

Consider any pair of calls c1 and c2 in π1 and π2 from the current levels d[n1]

and d[n2] to procedures p1 and p2 respectively, such that 〈p1, p2〉 ∈ mapf . Let

c′1 and c′2 be the calls to UP(p1) and UP(p2) which replace c1 and c2 in π′1 and

π′2. Note that UP(p1) = UP(p2) since 〈p1, p2〉 ∈ mapf .

By the induction hypothesis, procedures p1, p2 satisfy comp-equiv(p1, p2) for all

subcomputations of depth ≤ i, and in particular for subcomputations of π1, π2

that begin in c1 and c2. By construction, the input and output values of c1

are equal to those of c′1. Similarly, the input and output values of c2 are equal

to those of c′2. Consequently, the pair of calls c′1 and c′2 to the uninterpreted
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procedure UP(p1) satisfy the congruence condition. Hence, π ′1 and π′2 are legal

subcomputations through F UP and GUP .

4. By the rule premise, any two computations through F UP and GUP satisfy

comp-equiv(FUP , GUP ). Particularly, as π′1 and π′2 are argument-equivalent

by step 2, this entails that B ′1.σ[arg-wF ] = B′2.σ[arg-wG]. By construction,

B1.σ[arg-wF ] = B′1.σ[arg-wF ] and B2.σ[arg-wG] = B′2.σ[arg-wG]. Therefore,

by transitivity,

B1.σ[arg-wF ] = B2.σ[arg-wG] ,

which proves that π1 and π2 satisfy comp-equiv(F,G).

6 A proof rule for mutual termination of proce-

dures

Rule (proc-p-eq) only proves partial equivalence, because it only refers to finite

computations. It is desirable, in the context of equivalence checking, to prove that

the two procedures mutually terminate. If, in addition, termination of one of the

programs is proven, then ‘total equivalence’ is established.

6.1 Definitions

Definition 13 (Mutual termination of procedures). If for every pair of argument-

equivalent subcomputations π′1 and π′2 with respect to two procedures F and G, it

holds that π′1 is finite if and only if π′2 is finite, then F and G are mutually terminating.

�

Denote by mutual-terminate(F,G) the fact that F and G are mutually terminat-

ing.
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(6.1.1) ∀〈F,G〉 ∈ mapf . {
(6.1.2) comp-equiv(F,G) ∧
(6.1.3) `LUP reach-equiv(FUP , GUP ) }

(6.1.4) ∀〈F,G〉 ∈ mapf . mutual-terminate(F,G)
(m-term)

(6.1)

Figure 9: Rule (m-term): An inference rule for proving the mutual termination of
procedures. Note that Premise 6.1.2 can be proven by the (proc-p-eq) rule.

Definition 14 (Reach equivalence of procedures). Procedures F and G are reach-

equivalent if for every pair of argument-equivalent subcomputation π and τ through

F and G respectively, for every call statement cF = “call p1” in F (in G), there

exists a call cG = “call p2” in G (in F ) such that 〈p1, p2〉 ∈ mapf , and π and τ reach

cF and cG respectively with the same read arguments, or do not reach them at all.

Denote by reach-equiv(F,G) the fact that F and G are reach-equivalent. Note

that checking for reach-equivalence amounts to proving the equivalence of the ‘guards’

leading to each of the mapped procedure calls (i.e., the conjunction of conditions that

need to be satisfied in order to reach these program locations), and the equivalence

of the arguments before the calls. This will be demonstrated in two examples later

on.

6.2 Rule (m-term)

The mutual termination rule (m-term) is stated in Fig. 9. It is interesting to note

that unlike proofs of procedure termination, here we do not rely on well-founded sets

(see, for example, [14] Sect.3.4).

Example 7. Continuing Example 5, we now prove the mutual termination of the two

programs in Fig. 4. Since we already proved comp-equiv(gcd1, gcd2) in Example 5, it
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is left to check Premise (6.1.3), i.e.,

`LUP reach-equiv(gcd1
UP , gcd2

UP ) .

Since in this case we only have a single procedure call in each side, the only thing

we need to check in order to establish reach-equivalence, is that the guards controlling

their calls are equivalent, and that they are called with the same input arguments.

The verification condition is thus:

(Tgcd1 ∧ Tgcd2 ∧ (a = x) ∧ (b = y))→
( ((y0 > 0)↔ (b0 6= 0)) ∧ // Equal guards

((y0 > 0)→ ((b0 = y0) ∧ (a1 = z0 mod y0))) ) // Equal inputs

(6.2)

where Tgcd1 and Tgcd2 are as defined in Eq. (5.4) and (5.5).

6.3 Rule (m-term) is sound

We now prove the following:

Theorem 2 (Soundness). If the proof system LUP is sound then the rule (m-term)

is sound.

Proof. In case the computations of P1 and P2 are both finite or both infinite the

consequent of the rule holds by definition. It is left to consider the case in which one

of the computations is finite and the other is infinite. We show that if the premise of

(m-term) holds such a case is impossible.

Let P1 and P2 be two programs in LPL, π1 and π2 maximal subcomputations

from some levels in P1 and P2 respectively, t1 and t2 the stack-level trees of these

computations, n1 and n2 the root nodes of t1 and t2 respectively and F = p[n1] and

G = p[n2]. Assume π1 and π2 are argument-equivalent. Without loss of generality

assume also that π1 is finite and π2 is not.
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Consider the computation π1. We continue as in the proof of Theorem 1. We

construct a computation π′1 in FUP , which is the same as π1 in the level of n1,

with the following change. Each closed subcomputation at a deeper level caused by

a call cF , is replaced with a subcomputation through an uninterpreted procedure

UP(callee[cF ]), which receives and returns the same values as received and returned

by cF . In a similar way we construct a computation π ′2 in GUP corresponding to π2.

By Premise (6.1.2), any pair of calls to some procedures p1 and p2 (related by mapf)

satisfy comp-equiv(p1, p2). Thus, any pair of calls to an uninterpreted procedure

UP(p1) (which is equal to UP(p2)) in π′1 and π′2 satisfy the congruence condition (see

(5.1)). As in the proof of the (proc-p-eq) rule, this is sufficient to conclude that π ′1

and π′2 are valid subcomputations through F UP and GUP (but not necessarily closed).

By Premise (6.1.3) of the rule and the soundness of the underlying proof system

LUP, π′1 and π′2 satisfy the condition in reach-equiv(F UP , GUP ) . It is left to show

that this implies that π2 must be finite. We will prove this fact by induction on the

depth d of t1.

Base: d = 0. In this case n1 is a leaf and π1 does not execute any call state-

ments. Assume that π2 executes some call statement cG in G. Since by Premise

(6.1.3) reach-equiv(F UP , GUP ) holds, then there must be some call cF in F such that

〈callee[cF ], callee[cG]〉 ∈ mapf and some configuration C1 ∈ π′1 such that current-label[C1] =

before[cF ] (i.e., π′1 reaches the cF call). But this is impossible as n1 is a leaf. Thus π2

cannot be infinite.

Step:

1. Assume (by the induction hypothesis) that if π1 is a finite computation with

stack-level tree t1 of depth d < i then any π2 such that

first[π1].σ[arg-rF ] = first[π2].σ[arg-rG],

cannot be infinite. We now prove this for π1 with t1 of depth d = i.
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2. Let π̂2 be some subcomputation of π2 from level d[n2] + 1, C2 be the configura-

tion in π2 which comes immediately before π̂2 (C2 = pred[π̂2]). Let cG be the

call statement in G which is executed at C2 (in other words current-label[C2] =

before[cG]).

3. Since by Premise (6.1.3) reach-equiv(F UP , GUP ), there must be some call cF

in F such that 〈callee[cF ], callee[cG]〉 ∈ mapf and some configuration C1 ∈ π′1
from which the call cF is executed (i.e., current-label[C1] = before[cF ]), and

C1 passes the same input argument values to cF as C2 to cG. In other words,

if cF = call p1(e1;x1) and cG = call p2(e2;x2), then C1.σ[e1] = C2.σ[e2]. But

then, there is a subcomputation π̂1 of π1 from level d[n1] + 1 which starts im-

mediately after C1 (C1 = pred[π̂1]]).

4. π̂1 is finite because π1 is finite. The stack-level tree t̂1 of π̂1 is a subtree of t1 and

its depth is less than i. Therefore, by the induction hypothesis (the assumption

in item 1) π̂2 must be finite as well.

5. In this way, all subcomputations of π2 from level d[n2] + 1 are finite. By defini-

tion, all subcomputations of π2 at level d[n2] are finite. Therefore π2 is finite.

6.4 Using rule (m-term): a long example

In this example we set the domain D to be the set of binary trees with natural values

in the leafs and the + and * operators at internal nodes8.

Let t1, t2 ∈ D. We define the following operators:

8To be consistent with the definition of LPL (Definition 1), the domain must also include true
and false. Hence we also set the constants true and false to be the leafs with 1 and 0 values
respectively.
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• isleaf(t1) returns true if t1 is a leaf and false otherwise.

• isplus(t1) returns true if t1 has ‘+’ in its root node and false otherwise.

• leftson(t1) returns false if t1 is a leaf, and the tree which is its left son otherwise.

• doplus(l1, l2) returns a leaf with a value equal to the sum of the values in l1 and

l2, if l1 and l2 are leafs, and false otherwise.

The operators ismult(t1), rightson(t1) and domult(t1, t2) are defined similarly to

isplus, leftson and doplus, respectively.

The two procedures in Fig. 10 calculate the value of an expression tree.

We introduce three uninterpreted procedures E,P and M and set the mapping

UP to satisfy

UP(Eval1) = UP(Eval2) = E,

UP(Plus1) = UP(Plus2) = P,

UP(Mult1) = UP(Mult2) = M .

The SSA form of the formulas which represent the possible computations of isolated

procedure bodies are:

TEval1 =




a0 = a ∧
(isleaf (a0)→ r1 = a0) ∧
(¬ isleaf (a0) ∧ isplus(a0)→ P (a0, r1)) ∧
(¬ isleaf (a0) ∧ ¬ isplus(a0) ∧ ismult(a0)→M(a0, r1)) ∧
r = r1




TEval2 =




x0 = x ∧
(isleaf (x0)→ y1 = x0) ∧
(¬ isleaf (x0) ∧ ismult(x0)→M(x0, y1)) ∧
(¬ isleaf (x0) ∧ ¬ ismult(x0) ∧ isplus(x0)→ P (x0, y1)) ∧
y = y1






37

procedure Eval1(val a; ret r):
if isleaf(a) then

r := a
else

if isplus(a) then
l1 call Plus1(a; r) l3

else
if ismult(a) then

l5 call Mult1(a; r) l7

fi
fi

fi
return

procedure Plus1(val a; ret r):
l9 call Eval1(leftson(a); v);
l11 call Eval1(rightson(a);u);
r := doplus(v, u);
return

procedure Mult1(val a; ret r):
l13 call Eval1(leftson(a); v);
l15 call Eval1(rightson(a);u);
r := domult(v, u);
return

procedure Eval2(val x; ret y):
if isleaf(x) then

y := x
else

if ismult(x) then
l2 call Mult2(x; y) l4

else
if isplus(x) then

l6 call Plus2(x; y) l8

fi
fi

fi
return

procedure Plus2(val x; ret y):
l10 call Eval2(rightson(x);w);
l12 call Eval2(leftson(x); z);
y := doplus(w, z);
return

procedure Mult2(val x; ret y):
l14 call Eval2(rightson(x);w);
l16 call Eval2(leftson(x); z);
y := domult(w, z);
return

Figure 10: Two procedures to calculate the value of an expression tree. Only labels
around the call constructs are shown.
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TPlus1 =




a0 = a ∧
E(leftson(a0), v1) ∧
E(rightson(a0), u1) ∧
r1 = doplus(v1, u1) ∧
r = r1




TPlus2 =




x0 = x ∧
E(rightson(x0), w1) ∧
E(leftson(x0), z1) ∧
y1 = doplus(w1, z1) ∧
y = y1




TMult1 =




a0 = a ∧
E(leftson(a0), v1) ∧
E(rightson(a0), u1) ∧
r1 = domult(v1, u1) ∧
r = r1




TMult2 =




x0 = x ∧
E(rightson(x0), w1) ∧
E(leftson(x0), z1) ∧
y1 = domult(w1, z1) ∧
y = y1




Proving partial computational equivalence for each of the procedure pairs amounts

to proving the following formulas to be valid:

(a = x ∧ TEval1 ∧ TEval2) → r = y

(a = x ∧ TPlus1 ∧ TPlus2) → r = y

(a = x ∧ TMult1 ∧ TMult2) → r = y .

To prove these formulas it is enough for LUF to know the following facts about

the operators of the domain:

∀l1, l2(doplus(l1, l2) = doplus(l2, l1) ∧ domult(l1, l2) = domult(l2, l1))

∀t1(isleaf (t1)→ ¬ isplus(t1) ∧ ¬ ismult(t1))

∀t1(isplus(t1)→ ¬ ismult(t1) ∧ ¬ isleaf (t1))

∀t1(ismult(t1)→ ¬ isleaf (t1) ∧ ¬ isplus(t1))

This concludes the proof of partial computational equivalence using rule (proc-

p-eq). To prove mutual termination using the (m-term) rule we need in addition

to verify reach-equivalence of each pair of procedures.

To check reach-equivalence we should check that the guards and the read argu-

ments at labels of related calls are equivalent. This can be expressed by the following

formulas:
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ϕ1 = ( g1 = (¬ isleaf (a0) ∧ isplus(a0)) ∧
g2 = (¬ isleaf (x0) ∧ ¬ ismult(x0) ∧ isplus(x0)) ∧
g3 = (¬ isleaf (a0) ∧ ¬ isplus(a0) ∧ ismult(a0)) ∧
g4 = (¬ isleaf (x0) ∧ ismult(x0)) ∧
g1 ↔ g2 ∧
g3 ↔ g4 ∧
g1 → a0 = x0 ∧
g3 → a0 = x0)

The guards at all labels in Plus1, P lus2,Mult1 and Mult2 are all true, therefore the

reach-equivalence formulas for these procedures collapse to:

ϕ2 = ϕ3 = ( (leftson(a0) = rightson(x0) ∨ leftson(a0) = leftson(x0)) ∧
(rightson(a0) = rightson(x0) ∨ rightson(a0) = leftson(x0)) ∧
(leftson(a0) = rightson(x0) ∨ rightson(a0) = rightson(x0)) ∧
(leftson(a0) = leftson(x0) ∨ rightson(a0) = leftson(x0)))

In this formula each call in each side is mapped to one of the calls on the other side:

the first two lines map calls of side one to calls on side two, and the last two lines

map calls of side two to side one. Finally, the formulas that need to be validated are:

(a = x ∧ TEval1 ∧ TEval2) → ϕ1

(a = x ∧ TPlus1 ∧ TPlus2) → ϕ2

(a = x ∧ TMult1 ∧ TMult2) → ϕ3 .

7 A proof rule for equivalence of reactive programs

Rules (proc-p-eq) and (m-term) that we studied in the previous two sections, are

concerned with equivalence of finite programs, and with proving the mutual termi-

nation of programs, respectively. In this section we introduce a rule that generalizes

(proc-p-eq) in the sense that it is not restricted to finite computations. This gen-

eralization is necessary for reactive programs. We say that two reactive procedures
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F and G are reactively equivalent if given the same input sequences, their output

sequences are the same.

7.1 Definitions

The introduction of the rule and later on the proof requires an extension of LPL to

allow input and output constructs:

Definition 15 (LPL with I/O constructs (LPL+IO)). LPL+IO is the LPL program-

ming language with two additional statement constructs:

input(x) | output(e)

where x ∈ V is a variable and e is an expression over OD. If a sequence of input

constructs appear in a procedure they must appear before any other statement in

that procedure. This fact is important for the proof of correctness.9 �

The input and output constructs are assumed to read and write values in the

domain D. A reactive system reads a sequence of inputs using its input constructs and

writes a sequence of outputs by its output constructs. These sequences may be finite

or infinite. A computation of an LPL+IO program is a sequence of configurations of

the form: C = 〈d,O, pc, σ,R,W 〉 where R and W are sequences of values in D and

all other components in C are as in Section 4.1. Intuitively, R denotes the suffix of

the sequence of inputs that remains to be read after configuration C, and W is the

sequence of outputs that were written until configuration C.

Definition 16 (Transition relation in LPL+IO). Let ‘→’ be the least relation among

configurations which satisfies: if C → C ′, C = 〈 d,O, pc, σ, R,W 〉, C ′ = 〈 d′, O′, pc′, σ′,-
R
′
,W

′〉 then:

9A procedure that reads inputs during its execution rather than at its beginning can be simulated
by replacing the input command with a procedure call. The called procedure only reads the inputs
and returns them to the caller, and hence respects the requirement that the inputs are read at its
beginning.
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1. If current-label[C] = before[S] for some input construct S = “input(x)”,

and R0 is the value being read, then d′ = d, O′ = O, pc′ = 〈pci〉i∈{0,...,d−1} ·
〈after[S]〉, σ′ = σ[R0|x], R

′
= 〈Ri〉i∈{1,...}, W ′

= W .

2. If current-label[C] = before[S] for some output construct S = “output(e)”

then d′ = d, O′ = O, pc′ = 〈pci〉i∈{0,...,d−1} · 〈after[S]〉, σ′ = σ, R
′

= R, W
′

=

W · 〈σ[e]〉

and for all other statement constructs the transition relation is defined as in Definition

4. �

By definition of the transition relation of LPL+IO, the W sequence of a configu-

ration contains the W sequence of each of its predecessors as a prefix. We say that

the input sequence of a computation is the R sequence of its first configuration. If the

computation is finite then its output sequence is the W sequence of its last configura-

tion. If the computation is infinite then its output sequence is the supremum of the

W sequences of all its configurations, when we take the natural containment order

between sequences (i.e., the sequence that contains each W sequence as its prefix).

For a computation π, we denote by InSeq[π] its input sequence and by OutSeq[π]

its output sequence. For a finite computation π, we denote by ∆R[π] the inputs

consumed along π, and by ∆W [π] the outputs written during π.

Definition 17 (input-equivalence of subcomputations with respect to procedures).

Two subcomputations π′1 and π′2 that are argument-equivalent with respect to two

procedures F and G are called input equivalent if

first[π′1].R = first[π′2].R .

�

In other words, two subcomputations are input equivalent with respect to proce-

dures F and G if they start at the beginnings of F and G respectively with equivalent

read arguments and equivalent input sequences.
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We will use the following notations in this section, for procedures F and G. The

formal definitions of these terms appear in Appendix A.

1. reactive-equiv(F,G) – Every two input-equivalent subcomputations with re-

spect to F and G generate equivalent output sequences until returning from F

and G, or forever if they do not return.

2. return-values-equiv(F,G) – The last configurations of every two input-equivalent

finite subcomputations with respect to F and G that end in the return from

F and G, valuate equally the write-arguments of F and G, respectively. (note

that return-values-equiv(F,G) is the same as comp-equiv(F,G) other than the

fact that it requires the subcomputations to be input equivalent and not only

argument equivalent).

3. input-suffix -equiv(F,G) – Every two input-equivalent finite subcomputations

with respect to F and G that end at the return from F and G, have (at return)

the same remaining sequence of inputs.

4. call-output-seq-equiv(F,G) – Every two input-equivalent subcomputations with

respect to F and G, generate the same sequence of procedure calls and output

statements, where corresponding procedure calls are called with equal inputs

(read-arguments and input sequences), and output statements output equal

values.

7.2 Rule (react-eq)

Figure 11 presents rule (react-eq), which can be used for proving equivalence of

reactive procedures.

We prove the soundness of this rule in the next subsection.
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(7.1.1) ∀〈F,G〉 ∈ mapf . {
(7.1.2) `LUP return-values-equiv(F UP , GUP ) ∧
(7.1.3) `LUP input-suffix -equiv(FUP , GUP ) ∧
(7.1.4) `LUP call-output-seq-equiv(F UP , GUP ) }

(7.1.5) ∀〈F,G〉 ∈ mapf . reactive-equiv(F, G)
(react-eq)

(7.1)

Figure 11: Rule (react-eq): An inference rule for proving the reactive equivalence
of procedures.

7.3 Rule (react-eq) is sound

Theorem 3 (Soundness). If the proof system LUP is sound then rule (react-eq) is

sound.

Proof. In the following discussion we use the following notation:

P1, P2 programs in LPL+IO

π, τ subcomputations in P1 and P2, respectively,

t1, t2 stack-level trees of π and τ , respectively,

n1, n2 the root nodes of t1 and t2, respectively,

F = p[n1], G = p[n2] the procedures associated with n1 and n2,

d1 = d[n1], d2 = d[n2] the levels of nodes n1 and n2, respectively.

We assume that π and τ are input equivalent and that 〈F,G〉 ∈ mapf .

Our main lemma below focuses on finite stack-level trees. The extension to infinite

computations will be discussed in Lemma 5.

Lemma 1.
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If

1) π and τ are maximal subcomputations,

2) π and τ are input equivalent,

3) first[π].W = first[τ ].W ,

4) π is finite and its stack-level tree depth is d, and

5) the premises of (react-eq) hold,

then

1) τ is finite and its stack-level tree depth is at most d,

2) last[π].σ[arg-wF ] = last[τ ].σ[arg-wG],

3) last[π].R = last[τ ].R, and

4) last[π].W = last[τ ].W .

While the lemma refers to π in the premise and τ in the consequent, this is done

without loss of generality. If premise 1 or 2 is false, the rule holds trivially. Premise

3 holds trivially for the main procedures, and premise 4 holds trivially for the finite

computations case (which this lemma covers) for some d. Note that consequent 4

implies the consequent of rule (react-eq). Hence proving this lemma proves also

Theorem 3 for the case of finite stack-level trees. Together with Lemma 5 that refers

to infinite computations, this will prove Theorem 3.

Proof. (Lemma 1) By induction on the stack-level tree depth d.

Base: n1 is a leaf. Since Premise (7.1.4) holds, τ does not contain any calls from

GUP . Thus, n2 is a leaf as well, and the depth of t2 must be 1 (consequent 1). π and

τ contain no calls to procedures, which implies that they are also valid computations

through FUP and GUP , respectively. Consequents 2,3 and 4 of the lemma are implied

directly from the three premises of (react-eq), respectively, and the soundness of

the proof system LUP.

Step: We now assume that Lemma 1 holds for all callees of F and G (the procedures

of the children in the stack-level trees) and prove it for F and G.
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The computation π is an interleaving between ‘at-level’ and ‘from-level’ subcom-

putations. We denote the former subcomputations by π̄i for i ≥ 1, and the latter by

π̂j for j ≥ 1. For example, the subcomputation corresponding to level d+1 in the left

drawing of Fig. 7 has three ‘in-level’ segments that we number π̄1, π̄2, π̄3 (correspond-

ing to segments 2,4,8 in the drawing) and two ‘from-level’ subcomputations that we

number π̂1, π̂2 (segments 3 and 5,6,7 in the drawing).

Derive a computation π′ in FUP from π as follows. First, set first[π′] = first[π].

Further, the at-level subcomputations remain the same (other than the R and W

values – see below) and are denoted respectively π̄ ′i. In contrast the ‘from-level’

subcomputations are replaced as follows. Replace in π each subcomputation π̂j ∈
from(π, d1) caused by a call cF , with a subcomputation π̂′j through an uninterpreted

procedure UP(callee[cF ]), which returns the same value as returned by cF . A small

adjustment to R and W in π′ is required since the uninterpreted procedures do not

consume inputs or generate outputs. Hence, R remains constant in π ′ after passing

the input statements in level d1 and W contains only the output values emitted by

the at-level subcomputations. In a similar way construct a computation τ ′ in GUP

corresponding to τ .

In the course of the proof we will show that π ′ and τ ′ are valid subcomputations

through FUP , GUP , as they satisfy the congruence condition.

Proof plan: Proving the step requires several stages. First, we will prove two addi-

tional lemmas: Lemma 2 will prove certain properties of ‘at-level’ subcomputations,

whereas Lemma 3 will establish several properties of ‘from-level’ subcomputations,

assuming the induction hypothesis of Lemma 1. Second, using these lemmas we will

establish in Lemma 4 the relation between the beginning and end of subcomputations

π and τ . This will prove the step of Lemma 1.

The notations in the following lemma correspond to the left drawing in Fig. 12.

Specifically,
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σ

τ̄i

τ̄ ′i

π̄′i

π̄i

A2

A′2

A′1

A1 B1

arg-r
R,W

B′1

arg-r

B′2

B2

σ σ

σR,W R,W
arg-r σ

B1

π̂j

C1
σ

R,W
π̂′j

B′1
arg-r

C ′1

τ̂ ′j
B′2
σ

C ′2
σ

τ̂j

B2 C2

Figure 12: (left) ‘at-level’ subcomputations – a diagram for Lemma 2. (right) ‘from-
level’ subcomputations – a diagram for Lemma 3

A1 = first[π̄i], A
′
1 = first[π̄′i], A

′
2 = first[τ̄ ′i ], A2 = first[τ̄i],

B1 = last[π̄i], B
′
1 = last[π̄′i], B

′
2 = last[τ̄ ′i ], B2 = last[τ̄i] .

The figure shows the in-level segments π̄i, π̄
′
i, τ̄i, τ̄

′
i , the equivalences between vari-

ous values in their initial configurations which we assume as premises in the lemma,

and the equivalences that we prove to hold in the last configurations of these sub-

computations.

The in-level segment π̄i may end with some statement call p1(e1;x1) or at a return

from procedure F . Similarly, τ̄i may end with some statement call p2(e2;x2) or at a

return from procedure G.

Lemma 2 (Properties of an at-level subcomputation).

For each i, with respect to π̄i, τ̄i, π̄
′
i and τ̄ ′i ,
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if

1) A1.σ|d1 = A′1.σ|d1

2) A2.σ|d2 = A′2.σ|d2

3) A1.R = A2.R

4) A1.W = A2.W

5) If i = 1 then (A1.R = A′1.R and A2.R = A′2.R)

6) If i = 1 then A1.σ|d1 = A2.σ|d2.

then

1) B1.σ|d1 = B′1.σ|d1

2) B2.σ|d2 = B′2.σ|d2

3) If π̄i ends with call p1(e1;x1) then τ̄i ends with

call p2(e2;x2) and 〈p1, p2〉 ∈ mapf
4) If π̄′i ends with a call statement, then B ′1.σ[e1] = B′2.σ[e2]

5) If π̄i ends with a call statement, then B1.σ[e1] = B2.σ[e2]

6) B1.R = B2.R

7) B1.W = B2.W

(In Fig. 12 consequents 4,5 are represented by the requirement of having equal

arg-r values (equal formal parameters)).

Proof. (Lemma 2)

1. (Consequent 1) For i > 1: A1.σ|d1 = A′1.σ|d1(Premise 1), hence, by definition of

π̄′i (which implies that π̄i and π̄′i are equivalent, because they are defined by the

same LPL code and begin with the same variable values), we have B1.σ|d1 =

B′1.σ|d1 .

Recall that by definition of LPL+IO, input statements may appear only at

the beginning of the procedure. Therefore, for i = 1 it is a little more com-

plicated because of possible input statements. In addition to Premise 1 we

now also need A1.R = A′1.R (Premise 5) and again, by definition of π̄ ′i we have

B1.σ|d1 = B′1.σ|d1.
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2. (Consequent 2) Dual to the proof of consequent 1, using Premise 2 instead of

Premise 1.

3. Since π̄i, π̄
′
i are defined by the same LPL code and begin with the same variable

values and, for the case of i = 1, the same input sequence, they consume the

same portions of the input sequence and produce the same output subsequence.

Thus, we have ∆W [π̄i] = ∆W [π̄′i],∆R[π̄i] = ∆R[π̄′i], and in a similar way with

respect to τ̄i, τ̄
′
i , we have ∆W [τ̄i] = ∆W [τ̄ ′i ],∆R[τ̄i] = ∆R[τ̄ ′i ].

4. If i = 1, π̄i, π̄
′
i, τ̄
′
i and τ̄i are the first segments in π, π′, τ ′ and τ , and thus

may contain input statements. Then by Premise 5 of the lemma we have

A1.R = A′1.R, A2.R = A′2.R, and by A1.R = A2.R (Premise 3) and transitivity

of equality we have A′1.R = A′2.R.

5. (Consequents 3 and 4) The subcomputations from the beginning of π ′ to the end

of π̄′i and from the beginning of τ ′ to the end of τ̄ ′i are prefixes of valid subcom-

putations through F UP and GUP . These subcomputations are input equivalent

due to A′1.R = A′2.R (see item 4 above) and A1.σ|d1 = A2.σ|d2 (Premise 6).

If π̄i ends with call p1(e1;x1) then π̄′i ends with call UP(p1)(e1;x1). Then,

by call-output-seq-equiv(F UP , GUP ) (premise 7.1.4 of (react-eq)), τ̄ ′i must

end with call UP(p2)(e2;x2) where 〈p1, p2〉 ∈ mapf , and therefore τ̄i ends with

call p2(e2;x2). This proves consequent 3. The same premise also implies that

B′1.σ[e1] = B′2.σ[e2], which proves consequent 4, and that ∆W [π̄ ′i] = ∆W [τ̄ ′i ].

6. (Consequent 5) Implied by consequents 1,2 and 4 that we have already proved,

and transitivity of equality.
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7. Consider π̄′i and τ̄ ′i . For i = 1, π̄′1 and τ̄ ′1 are prefixes of valid input-equivalent

subcomputations through F UP andGUP , and as in any such subcomputation the

inputs are consumed only at the beginning. Therefore, input-suffix -equiv(F UP , GUP )

(Premise 7.1.3), which implies equality of ∆R of these subcomputations, also

implies ∆R[π̄′1] = ∆R[τ̄ ′1]. For i > 1, no input values are read in π̄′i and τ̄ ′i and

hence ∆R[π̄′i] = ∆R[τ̄ ′i ] = ∅. Thus, for any i we have ∆R[π̄′i] = ∆R[τ̄ ′i ].

8. (Consequent 6) By ∆R[π̄i] = ∆R[π̄′i], ∆R[τ̄i] = ∆R[τ̄ ′i ] (see item 3), ∆R[π̄′i] =

∆R[τ̄ ′i ] (see item 7) and transitivity of equality we have ∆R[π̄i] = ∆R[τ̄i]. This

together with A1.R = A2.R (Premise 3) entails consequent 6.

9. (Consequent 7) By ∆W [π̄i] = ∆W [π̄′i], ∆W [τ̄i] = ∆W [τ̄ ′i ] (see item 3), ∆W [π̄′i] =

∆W [τ̄ ′i ] (see end of item 5) and transitivity of equality we have ∆W [π̄i] =

∆W [τ̄i]. This together with A1.W = A2.W (Premise 4) entails consequent 7.

(End of proof of Lemma 2).

The notations in the following lemma corresponds to the right drawing in Fig. 12.

The beginning configurations B1, B
′
1, B

′
2, B2 are the same as the end configurations

of the drawing in the left of the same figure. In addition we now have the configura-

tions at the end of the ‘from’-level computations, denoted by C1, C
′
1, C2, C

′
2, or, more

formally:

C1 = last[π̂j], C
′
1 = last[π̂′j], C

′
2 = last[τ̂ ′j], C2 = last[τ̂j] .

Note that π̂j is finite by definition of π, and therefore last[π̂j] is well-defined. We will

show in the proof of the next lemma that τ̂j is finite as well, and therefore last[τ̂j] is

also well-defined.

Lemma 3 (Properties of a ‘from-level’ subcomputation). With respect to π̂j, τ̂j, π̂
′
j

and τ̂ ′j for some j, let current-label[B1] = before[cF ], current-label[B2] = before[cG],
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cF = call p1(e1;x1), and cG = call p2(e2;x2). Then

if

1) B1.σ|d1 = B′1.σ|d1

2) B2.σ|d2 = B′2.σ|d2

3) B1.σ[e1] = B2.σ[e2]

4) B′1.σ[e1] = B′2.σ[e2]

5) B1.R = B2.R

6) B1.W = B2.W

7) π̂j has a stack-level tree of depth at most d− 1

8)〈p1, p2〉 ∈ mapf ,
then

1) C1.R = C2.R

2) C1.W = C2.W

3) C1.σ|d1 = C ′1.σ|d1

4) C2.σ|d2 = C ′2.σ|d2

5) τ̂j has a stack-level tree of depth at most d− 1 .

Proof. (Lemma 3)

1. (Consequents 1,2,5) As π̂j has a stack-level tree of depth at most d−1 (Premise

7), by B1.σ[e1] = B2.σ[e2] (Premise 3), B1.R = B2.R (Premise 5), and the in-

duction hypothesis of Lemma 1, τ̂j has stack-level tree of depth at most d − 1

and: C1.σ[x1] = C2.σ[x2], C1.R = C2.R and ∆W [π̂j] = ∆W [τ̂j]. Therefore, by

B1.W = B2.W (Premise 6) we have C1.W = C2.W .

2. (Consequents 3,4) As π̂′j and τ̂ ′j are computations through calls to the same

uninterpreted procedure (by premise 8) we can choose them in such a way that

they satisfy C ′1.σ[x1] = C1.σ[x1] = C2.σ[x2] = C ′2.σ[x2], and hence satisfy (5.1).

As valuations of other variables by σ|d1 and σ|d2 are unchanged by subcomputa-

tions at higher levels (above d1 and d2 respectively), we have C1.σ|d1 = C ′1.σ|d1
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and C2.σ|d2 = C ′2.σ|d1 .

(End of proof of Lemma 3).

Using lemmas 2 and 3 we can establish equivalences of values in the end of input-

equivalent subcomputations, based on the fact that every subcomputation, as men-

tioned earlier, is an interleaving between ‘at-level’ and ‘from-level’ subcomputations.

Lemma 4 (Properties of subcomputations). Let A1 = first[π̄i], A2 = first[τ̄i], A
′
1 =

first[π̄′i] and A′2 = first[τ̄ ′i ] be the first configurations of π̄i, τ̄i, π̄
′
i and τ̄ ′i respectively for

some i. Then these configurations satisfy the following conditions:

1) A1.σ|d1 = A′1.σ|d1

2) A2.σ|d2 = A′2.σ|d2

3) A1.R = A2.R

4) A1.W = A2.W

Proof. By induction on i.

Base: For i = 1, π̄i and τ̄i start at the beginning of F and G. Hence π̄′i and τ̄ ′i are

at the beginning of F UP and GUP . By the definition of π̄′1 and τ̄ ′1, the lemma is valid

in this case because π and τ are input equivalent (between themselves and with π ′

and τ ′). Consequent 4 stems from Premise 3 of Lemma 1.

Step: Consider in π some consecutive at-level and from-level subcomputations π̄i

and π̂j and their respective counterparts: (π̄′i, π̂
′
j) in π′, (τ̄ ′i , τ̂

′
j) in τ ′, and finally (τ̄i, τ̂j)

in τ .

By the induction hypothesis and the finiteness of π̂i (guaranteed by the hypothesis

of Lemma 1), premises 1 – 4 of Lemma 2 hold. Premises 5 and 6 hold as well because

they are implied by the definitions of π ′, τ ′, π and τ . Thus, the premises and therefore

the consequents of Lemma 3 hold, which implies that the induction hypothesis of the

current lemma holds for i+ 1.

(End of proof of Lemma 4).
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Consequent 1 of Lemma 1 holds because for any j, if the depths of the stack-level

trees of τ̂j are bounded by d − 1 (consequent 5 of Lemma 3) then the depths of the

stack-level tree of τ is bounded by d.

The other consequents of Lemma 1 are proved by using Lemma 4. Let (π̄l,τ̄l) be

the last pair of subcomputations (e.g., in the left drawing of Fig. 7, segment 8 is the

last in level d + 1). Their counterparts in the isolated bodies F UP and GUP , π̄′l and

τ̄ ′l , are the last parts of the computations π′ and τ ′. We use the same notation as

before for denoting the configurations in the end of these subcomputations:

B1 = last[π], B′1 = last[π′], B′2 = last[τ ′], B2 = last[τ ] .

Therefore return-values-equiv(F UP , GUP ) entails

B′1.σ[arg-wF ] = B′2.σ[arg-wG] .

By Lemma 4 the configurations A1 = first[π̄l], A
′
1 = first[π̄′l], A

′
2 = first[τ̄ ′l ], and

A2 = first[τ̄l] satisfy the Premises of Lemma 2. By consequents 1 and 2 of this lemma

we have B1.σ|d1 = B′1.σ|d1 and B2.σ|d2 = B′2.σ|d2, and by transitivity B1.σ[arg-wF ] =

B2.σ[arg-wG] (this proves consequent 2 of Lemma 1). Further, consequents 5 and 6

of Lemma 2 yield B1.R = B2.R and B1.W = B2.W (this proves consequents 3,4 of

Lemma 1).

(End of proof of Lemma 1).

It is left to consider the case when π and τ are infinite (recall that by Lemma 1 π is

infinite if and only if τ is infinite). Hence, there is exactly one infinite branch in each

of the stack-level trees t1 and t2 (the stack-level trees of π and τ respectively). Figure

13 presents a possible part of π and its corresponding stack-level tree. Consider these

infinite branches as infinite sequences of nodes, which begin at their respective roots

and continue to nodes of higher levels.

We first need the following definition:
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Figure 13: (left) A part of an infinite computation π and (right) its corresponding
stack-level tree t1. The branch on the right is infinite. The notation correspond to
Lemma 5.

Definition 18 (Call configuration). A configuration C is a call configuration if

current-label[C] = before[call p(e;x)] for some procedure p. �

Lemma 5. Let π and τ be input-equivalent infinite computations through F and G,

respectively, with corresponding stack-level trees t1 and t2. Consider the series of call

configurations which are the last in their respective levels on the infinite branches

of t1 and t2 (i.e., the ones that bring the execution from one node of the infinite

branch to the next one). Let B1 and B2 be a pair of such configurations such that

B1.d = B2.d and let current-label[B1] = before[call p1(e1;x1)] and current-label[B2] =

before[call p2(e2;x2)]. Then

1) 〈p1, p2〉 ∈ mapf
2) B1.σ[e1] = B2.σ[e2]

3) B1.R = B2.R

4) B1.W = B2.W .

As in the case of Lemma 1, if the premises do not hold (i.e., the computations

are not input-equivalent), Theorem 1 holds trivially. Also as in the case of Lemma 1,

consequent 4 implies OutSeq[π] = OutSeq[τ ] and hence the consequent of Theorem 1

for the case of infinite computations.

Proof. (Lemma 5) By induction on the index of the nodes in the infinite branches.
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Let B1 and B2 be a pair of call configurations on the infinite branches of t1 and t2

respectively, which are at the same execution level, i.e., B1.d = B2.d.

Base: Consider n1, n2, the root nodes of t1 and t2. For each of the branches origi-

nating from n1, n2 that are not on the infinite branches (these are nodes containing

segments (2,4) and (6) in t1, as appears in the figure), Lemma 1 holds.

This allows us to use Lemma 4 (for example, between points θ1 and θ2 in the left

drawing), and Lemma 2 (for example, between points θ2 and B1 in the left drawing)

with respect to subcomputations starting at the beginning of F and G and ending at

B1, B2.

By consequent 3 of Lemma 2 〈p1, p2〉 ∈ mapf , which proves consequent 1 of the

current lemma. Consequents 5,6 and 7 of Lemma 2 imply the other three consequents

of the current lemma: B1.σ[e1] = B2.σ[e2], B1.R = B2.R and B1.W = B2.W .

Step: Let the call configurations B3 and B4 be the successors of B1 and B2 respec-

tively on the infinite branches. The subcomputations from B1 to B3 and from B2 to

B4 are finite and therefore Lemmas 1-4 apply to them.

We now assume that the induction hypothesis holds for B1 and B2 and prove it

for B3 and B4. By the induction hypothesis B1.σ[e1] = B2.σ[e2], B1.R = B2.R, and

B1.W = B2.W .

Let n3 and n4 be the nodes in the stack-level trees reached by the calls made at B1

and B2. For each of the branches originating from n3, n4 that are not on the infinite

branches Lemma 1 holds.

Similarly to the base case, Lemmas 2 and 4 apply to the subcomputations starting

at B1 and B2 and ending at B3, B4 respectively. By consequent 3 of Lemma 2 the

procedures called at B3 and B4 are mapped to one another, which proves consequent

1 of the current lemma. Consequents 5,6 and 7 of Lemma 2 imply the other three

consequents of the current lemma: B3.σ[e1] = B4.σ[e2], B3.R = B4.R and B3.W =

B4.W .
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(End of proof of Lemma 5)

We proved for both finite and infinite computations that the premises of Theorem 3

imply its consequent. This concludes the proof of soundness for the (react-eq) rule.

(End of proof of Theorem 3).

7.4 Using rule (react-eq): a long example

Every reactive program has at least one loop or recursion, and, recall, the former can

be translated into recursion as well.

In this section we present an example of a pair of reactive programs which behave

as a simple calculator over natural numbers. The calculated expressions can contain

the ‘+’ and ‘*’ operations and the use of ‘(’ and ‘)’ to associate operations. The

calculator obeys the operator precedence of ‘+’ and ‘*’. We set the domain D .
=

N ∪ {‘+’,‘*’,‘(’,‘)’}, where ‘+’,‘*’,‘(’ and ‘)’ are constant symbols, and the constants

true and false to be the 1 and 0 values respectively. We define + and * to be

operators over D. If t1, t2 ∈ N then the value of t1 + t2 and t1 ∗ t2 is as given by the

natural interpretation of this operations over N. If t1 6∈ N or t2 6∈ N then we define

t1 + t2 = t1 ∗ t2 = 0. We assume also the existence of the equality operator = over D.

The two programs in Fig. 14 are executed by a call to their respective “sum”

procedures with 0 as the input argument. We assume that the input sequence to the

program is a valid arithmetical expression. Each time a program reads ‘)’ from the

input sequence, it prints the value of the expression between the parentheses that this

input symbol closes. We proceed with a short explanation of the programs’ operation.

The procedures sumL and sumR receive the value of the sum until now in the

formal arguments vL or vR respectively, add to it the value of the next product that

they receive in variable rL or bR (from calls to prodL or prodR), and if the next symbol

is ‘)’ they output the sum and return it in variable rL or rR respectively. If the next

symbol is ‘+’ they recursively call sumL or sumR to continue the summation.

Similarly, the procedures prodL and prodR receive the value of the product up

to now in formal argument vL and vR, multiply it by the value of the next natural
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number or expression in parentheses (received from numL or numR in variable rL or

dR), and get the next symbol in opL or opR. If the next symbol is ‘*’ they recursively

call prodL or prodR to continue calculating the product. If the next symbol is ‘+’ or

‘)’, they just return the product value (in rL or rR).

The numL and numR procedure may read a number or a ‘(’ symbol from the input

sequence. In the former case, they just return this number through iL or nR. In the

latter case, they call sumL and sumR to calculate the value of the expression inside

the parentheses and return the result through iL or nR.

The getopL and getopR just read a single symbol from the input sequence (it can

be ‘+’, ‘*’ or ‘)’) and return it in opL or opR, respectively.

We use the (react-eq) rule to prove reactive equivalence of sumL and sumR,

under the assumption that they receive a valid arithmetical expression. We intro-

duce four uninterpreted procedures Us, Up, Un and Ug and set the mapping UP to

satisfy UP (sumL) = UP (sumR) = Us, UP (prodL) = UP (prodR) = Up, UP (numL) =

UP (numR) = Un and UP (getopL) = UP (getopR) = Ug.

Below we present the SSA form of the formulas that represent the possible com-

putations of the isolated procedure bodies. Each of the procedures has at most a

single input or output statement. We mark the single input value by in1 or in2,

and the single output value by out1 or out2.


vL
0 = vL ∧
Up(1; rL

1 , op
L
1) ∧

rL
2 = rL

1 + vL
0 ∧

(opL
1 = ‘)’ → out1 = rL

2) ∧
(opL

1 = ‘+’ → Us(r
L
2 ; rL

3)) ∧
(opL

1 6= ‘+’ → rL
3 = rL

2) ∧
rL = rL

3







vR
0 = vR ∧
Up(1; bR

1 , op
R
1 ) ∧

(opR
1 = ‘+’ → Us(v

R
0 + bR

1 ; rR
1 )) ∧

(opR
1 6= ‘+’ → rR

1 = vR
0 + bR

1 ) ∧
(opR

1 = ‘)’ → out2 = vR
0 + bR

1 ) ∧
rR = rR

1




TsumL TsumR
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procedure sumL(val vL; ret rL):
call prodL(1; rL, opL);
rL := rL + vL;
if opL=‘)’ then

output(rL);

fi
if opL=‘+’ then

call sumL(rL; rL)

fi
return

procedure sumR(val vR; ret rR):
call prodR(1; bR, opR);
if opR =‘+’ then

call sumR(vR + bR; rR)
else

rR:=vR + bR;

fi
if opR=‘)’ then

output(vR + bR);

fi
return

procedure prodL(val vL; ret
rL, opL):

call numL(rL);
rL := rL ∗ vL;
call getopL(opL);
if opL = ‘*’ then

call prodL(rL; rL, opL)

fi
return

procedure prodR(val vR; ret
rR, opR):

call numR(dR);
call getopR(opR);
if opR=‘*’ then

call prodR(vR ∗ dR; rR,
opR)

else
rR := vR ∗ dR

fi
return

procedure numL(val; ret iL):
input(iL);
if iL=‘(’ then

call sumL(0; iL)

fi
return

procedure numR(val; ret nR):
input(iR);
if iR=‘(’ then

call sumR(0; nR)
else

nR := iR

fi
return

procedure getopL(val; ret opL):
input(opL);
return

procedure getopR(val; ret opR):
input(opR);
return

Figure 14: Two reactive calculator programs (labels were removed for better read-
ability). The programs output a value every time they encounter the ‘)’ symbol.
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


vL
0 = vL ∧
Un(rL

1) ∧
rL

2 = rL
1 ∗ vL

0 ∧
Ug(op

L
1) ∧

(opL
1 = ‘*’ → Up(r

L
2 ; rL

3 , op
L
2)) ∧

(opL
1 6= ‘*’ → (rL

3 = rL
2∧

opL
2 = opL

1)) ∧
rL = rL

3 ∧ opL = opL
2







vR
0 = vR ∧
Un(dR

1 ) ∧
Ug(op

R
1 ) ∧

(opR
1 = ‘*’ → Up(v

R
0 ∗ dR

1 ;

rR
1 , op

R
2 )) ∧

(opR
1 6= ‘*’ → (rR

1 = vR
0 ∗ dR

1∧
opR

2 = opR
1 )) ∧

rR = rR
1 ∧ opR = opR

2




TprodL TprodR




iL0 = in1 ∧
(iL0 = ‘(’ → Us(0; iL1)) ∧
(iL0 6= ‘(’ → iL1 = iL0) ∧
iL = iL1







iR0 = in2 ∧
(iR0 = ‘(’ → Us(0;nR

1 )) ∧
(iR0 6= ‘(’ → nR

1 = iR0 ) ∧
nR = nR

1




TnumL TnumR

(
opL

0 = in1 ∧
opL = opL

0

) (
opR

0 = in2 ∧
opR = opR

0

)

TgetopL TgetopR

• Premise 7.1.2 (return-values-equiv). Checking this premise involves check-

ing all input-equivalent subcomputations through the isolated bodies of each

pair of the related procedures. As each of these isolated bodies include at most

a single input statement, a sequence of a single input is enough for each of these

checks. We denote this single input by R0. We check the following formulas to

be valid:

(vL = vR ∧ TsumL ∧ TsumR) → rL = rR

(vL = vR ∧ TprodL ∧ TprodR) → rL = rR ∧ opL = opR

(in1 = R0 ∧ in2 = R0 ∧ TnumL ∧ TnumR) → iL = nR

(in1 = R0 ∧ in2 = R0 ∧ TgetopL ∧ TgetopR) → opL = opR .

(7.2)
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• Premise 7.1.3 (input-suffix -equiv). Recall that calls to uninterpreted proce-

dures consume no values of the input sequence. Thus, to verify the satisfaction

of input-suffix -equiv , we only need to check that any two related procedures

have the same number of input statements. In this way, when the configura-

tions at the beginning of the two isolated procedure bodies have equal input

sequences, also the configurations at the end of these bodies have equal input

sequences as the same prefix was consumed by the computations through the

bodies. This condition is satisfied trivially for all mapped procedures.

• Premise 7.1.4 (call-output-seq-equiv). In procedures sumL, sumR, prodL,

prodR, numL and numR, the execution may take several paths. We need to

compare the guard and input values of each procedure call and each output

statement in each path. Note that the calls to Un and Ug are always uncon-

ditioned and have no read arguments. Therefore, they trivially satisfy the

call-output-seq-equiv conditions. The check involves validating the following

formulas:

(vL = vR ∧ TsumL ∧ TsumR)→
((1 = 1) ∧
(opL

1 = ‘)’ ↔ opR
1 = ‘)’) ∧ (opL

1 = ‘)’ → out1 = out2) ∧
(opL

1 = ‘+’↔ opR
1 = ‘+’) ∧ (opL

1 = ‘+’→ rL
2 = vR

0 + bR
1 )) .

(7.3)

It is easier to follow this formula while referring to the definition of TsumL and

TsumR . The second line asserts that the input arguments of Up are the same.

The third line asserts that the guards of the output statements are the same,

and if they both hold, then the output value is the same. The last line asserts

that the guards of the call to Us are the same, and if they both hold, then the

read arguments of Us are the same.

(vL = vR ∧ TprodL ∧ TprodR)→
((opL

1 = ‘*’↔ opR
1 = ‘*’) ∧ (opL

1 = ‘*’→ rL
2 = vR

0 ∗ dR
1 ))

(7.4)
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(in1 = R0 ∧ in2 = R0 ∧ TnumL ∧ TnumR)→
((iL0 = ‘(’↔ iR0 = ‘(’) ∧ (iL0 = ‘(’→ 0 = 0)) .

(7.5)

Using the uninterpreted procedure relations and commutativity of the ‘+’ and ‘*’

operators, one can prove the validity of (7.2) – (7.5). Note that uninterpreted proce-

dures which have no read arguments return non-deterministic but constant values in

their write arguments.

This concludes the verification of the premises of rule (react-eq), which estab-

lishes, among other things, that reactive-equiv(sumL, sumR) holds. Consequently

we know that the two programs generate the same output sequence when executed

on the same arithmetical expression.

8 What the rules cannot prove

All three rules rely on a 1-1 and onto mapping of the functions (possibly after in-

lining of some of them, as mentioned in the introduction), such that every pair of

mapped functions are computationally equivalent. Various semantic-preserving code

transformations do not satisfy this requirement. Here are a few examples:

1. Consider the following equivalent functions, which compute the sum of numbers

from 1 to the input n, which is assumed to be positive.

int F(unsigned int n) {

if (n <= 1) return n;

return n + F(n-1);

}

int G(unsigned int n) {

if (n <= 1) return n;

return n + (n - 1) + G(n-2);

}

Since the two functions are called with different arguments, their computational

equivalence cannot be proven with rule (proc-p-eq).

2. Consider a similar pair of equivalent functions, that this time make recursive

calls with equivalent arguments:
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int F(unsigned int n) {

if (n <= 0) return 0;

return n + F(n-1);

}

int G(unsigned int n) {

if (n <= 1) return n;

return n + G(n - 1);

}

The premise of (proc-p-eq) fails due to the case of n == 1.

3. We now consider an example in which the two programs are both computational

equivalent and reach-equivalent, but still our rules fail to prove it.

int F(unsigned int n) {

int loc;

if (n <= 0) return 0;

loc = F(n-1);

if (loc < 0) return -1;

return n + loc;

}

int G(unsigned int n) {

if (n <= 0) return n;

return n + G(n - 1);

}

In this case the ‘if’ condition in the first program never holds. Yet since the

Uninterpreted Functions return arbitrary, although equal, values, they can re-

turn a negative value, which will make this ‘if’ condition hold and as a result

make the two isolated functions return different values.

In the first two examples the compared procedures are not reach-equivalent: in the

first example due to the different read arguments with which the recursive call is

made, and in the second example due to the different condition under which the

recursive calls are made. In the third case it is ‘dead-code’ that fails the equivalence

check. It seems that only with invariants such problems can be solved.



Part II

Regression Verification for C

Programs

62



63

9 The Regression Verification Tool (RVT)

We have implemented a tool called the Regression Verification Tool (RVT). It takes

as input two C programs and optionally a third file that contains the equivalence

specification as defined by the user – the equivalence specification format will be

explained in Sect. 9.2. The two programs correspond to the “two sides” of the equiv-

alence verification problem. Our convention is that side 0 is the older version of the

program and side 1 is the newer version.

The tool is a preprocessor which decomposes the compared programs, generates

verification conditions in the form of nonrecursive C programs with assertions that

reflect the user’s equivalence specification, and uses an external decision procedure

to decide them. Thus, it reduces the equivalence problem to a functional verification

problem over a restricted type of program. Currently, the decision procedure is CBMC

(see Sect. 1.1), but any other decision procedure which can reason about the validity of

assertions in bounded-length C programs can be used. Thus, the tool is independent

of the choice of the decision procedure.

Before we present the structure of RVT we first present several assumptions about

the programs that we can compare. Then, in Sect. 9.2, we present the notion of

checkpoints, which are important for describing how the user defines the equivalence

specification.

9.1 Assumptions

The tool we developed works on C programs. The reference standard is ANSI C99,

but not all features presented in the standard are covered. The unsupported features

are:

• arrays,

• pointers to structures which are converted and passed as “void*” type, and

• many standard library functions, most of which handle strings.



64

In addition, we assume that

• the programs do not include aliasing between pointers which are arguments of

a single function, or which are globals that are used by the same function. This

is essential when using the three rules. See Sect. 9.3.5 for an example of how

aliasing can invalidate our use of rule (proc-p-eq).

• all dynamic structures that are passed to a function (through pointer arguments

or globals) are trees, i.e., aliasing within dynamic structures is not allowed

either. The reason for this assumption is described in Sect. 9.3.5.

9.2 Check points

Deciding program equivalence based only on the output may be

• Misleading: Output may not well-reflect complex computations.

• Impractical: Sometimes it is computationally too hard to prove the equivalence

of the two programs as a whole, but it is easy to verify intermediate results.

• Impossible: In some stages of the development the output is not yet imple-

mented or defined.

For this reason the user may want to compare values which are calculated during

the execution of the program. Therefore we present the notion of check-points: check-

points are locations (labels) of both programs where some values of some user-specified

expressions should be equal between the two compared programs.

The user supplies, in a separate directives file, a list of check-point declarations of

the form:

(〈label1; cond1; exp1〉; 〈label2; cond2; exp2〉) . (9.1)

Assume first that cond1 and cond2 are equal to true. Then this checkpoint decla-

ration represents the user’s specification that exp1 in the location specified by label1

in the first program, should always be equal to exp2 in location label2 in the second
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program. In other words, the sequence of values of these two expressions in these

locations should be equal in all executions on common inputs. Specifying that the

outputs of the program are equal is of course a special case of this mechanism.

Now let us generalize for the case that the conditions are not necessarily equal

to true. In the program that RVT generates from the two input programs, there is

code that updates an array with the value of expi each time it reaches labeli provided

that condi holds, for i ∈ {1, 2}. Then there is an assertion that checks the equivalence

of these two arrays. We will describe this mechanism in more detail and precision in

Sect. 9.3.3.

Channels Check-points can be associated with channels. Then, only check points

associated with the same channel are compared to one another. The order of the

values between different check points associated with the same channel is important

and this sequence of values is required to be the same on both sides. But check points

for different channels can interleave and may appear in different order on different

sides. Default channel is used when simple sequential checks are needed. By default,

all check-points are related to the default channel and the order that they are reached

in both programs must be the same.

Example 8. Figure 15 contains code of two functions which includes two check points:

the labels “check point 5” and “check point 4”. The line marked by ‘*’ causes a differ-

ence between the two programs. RVT recognizes such a difference. The tool recognizes

the labels “check point 5” and “check point 4” as check points because they appear in

the input “directives” file, which appears in Fig. 16.

The directives file first declares two channels called “digit chan” and “power chan”.

Then, it declares two check points on each side. Each check point declaration begins

with the “CP” keyword. The name of each check point is the label in the source

code at which the data for this check is collected. Note that in the example above all

condition expressions are 1, i.e., the data is collected every time we reach the specified

labels.
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int power(int x, unsigned y)

{

int res ;

for(res=1;y>0;y--) {

res = res*x ;

check_point_5:;

}

return res ;

}

int sum_hexas(unsigned long n) {

int sum=0 ;

while( n>0 ){

sum += (n & 0xF);

n >>= 4;

check_point_4:;

}

return sum ;

}

int power(int x, unsigned y) {

int res ;

unsigned i;

for(i = 0, res=1;i<y;i++) {

res *= x ;

check_point_5:;

}

return res ;

}

int sum_hexas(unsigned long n)

{

int sum=0 ;

for(;n>0;){

sum += (n & 0xF);

n >>= 4;

if( n == 1234 ) // *

sum=0;

check_point_4:;

}

return sum ;

}

Figure 15: Demonstrating check points

CHANNEL digit_chan;

CHANNEL power_chan;

SIDE0_CHECK_POINTS() {

CP check_point_4 = { digit_chan, 1, sum };

CP check_point_5 = { power_chan, 1, res };

}

SIDE1_CHECK_POINTS() {

CP check_point_4 = { digit_chan, 1, sum };

CP check_point_5 = { power_chan, 1, res };

}

Figure 16: The directive file contains the declaration of check points
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9.3 Structure and Algorithms

9.3.1 An overview of RVT

The description of RVT relies on the notion of call graphs.

Definition 19. A call-graph of a program is a directed graph G(V,E) such that the

vertices correspond to functions and for v1, v2 ∈ V , (v1, v2) ∈ E if and only if the

function corresponding to v1 calls the function corresponding to v2.

Recursive and mutually recursive functions appear as cycles in this graph. The

root of this graph corresponds to the “main” function and the leafs, if there are any,

to functions that do not call any other function.

As described above, RVT receives two C programs P1 and P2 and a directives

file with checkpoint declarations. It then follows roughly the following steps (the

exact program flow depends on the chosen notion of equivalence and the chosen proof

strategy, as we describe later in Sect. 9.3.6).

1. Converting loops to recursion All loops in P1 and P2 are replaced by

recursive functions. This process is described in Appendix C.1.

2. Pairing Functions on both sides are paired based on syntactic analysis, which

will be described in Sect. 9.3.2.

3. A call-graph based decomposition Assume for now that the two programs

do not contain mutual recursion, and hence their call graphs are DAGs with

possible self loops. The proof of equivalence is now conducted in an iterative

manner by following the call graphs of P1 and P2 bottom up. In each iteration

we attempt to prove the equivalence of two subprograms, that we call the related

subprograms. This iterative process is required both for computational reasons

(decomposition of the proof) and for being able to prove the equivalence of

recursive procedures. As for the latter, recall that the rules we described in part I

of the thesis allow us to prove the equivalence of recursive and mutually recursive
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functions by isolation, i.e., by replacing the recursive calls with uninterpreted

functions.

This decomposition algorithm will be described in detail in Sect. 9.3.3.

4. Syntactic check RVT checks whether the two related subprograms are equiv-

alent syntactically, namely the expression trees of the code on both sides are

isomorphic up to renaming of the internal variables (Section 9.3.2 describes this

in more detail). If yes then the related subprograms are declared equivalent.

5. Semantic check Otherwise, from a pair of related subprograms, RVT con-

structs a small C program which we call a check-block and sends it to the decision

procedure (CBMC). The conversion of related subprograms into check-blocks

is done in several steps, most of which will be described in more detail in the

next subsections.

(a) Global identifiers (of global functions, variables and types) are renamed.

This enables us to put the two related subprograms in the same check-block

without name-space collisions.

(b) Code is inserted at the check-point labels that collect the exp values spec-

ified in the check point during the execution of the check-block. The code

for each check-point is guarded by the condition expression associated with

the check-point.

(c) When proving rule (m-term) or (react-eq), additional code is inserted

in order to collect the data necessary for proving call-sequence equivalence

and reach-equivalence (see definitions 14 and 30). We discuss these issues

in Sects. 9.4.2 and 9.4.3.

(d) Code is inserted to declare and initialize structures and arrays that are used

to store and compare the collected values. A separate array is specified for

each channel.
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(e) Since uninterpreted functions are not supported directly by CBMC, we

add to the check-block code that implements them – essentially we replace

the bodies of functions that we wish to make uninterpreted with code

that enforces the congruence relation. This is described in more detail in

Sect. 9.4.1.

(f) If uninterpreted functions are used in the compared code, and the func-

tions that they replaced include check points, we add code that guarantees

that the order of reaching the check points and the call to uninterpreted

functions is equivalent on both sides. This is explained in Sect. 9.4.2.

(g) Finally, a “main” function is added which contains the code to initialize

the inputs to non-deterministic but equal values, executes the related sub-

programs one after the other and asserts that the output values and the

expressions written to the channels are equal.

The check-block is sent to the decision procedure (CBMC). If it decides that no

path in the check-block can violate one of the assertions, the root functions of

the related subprograms are declared partially equivalent. They can then be re-

placed by uninterpreted functions when RVT attempts to prove the equivalence

of their callers. If, however, the proof of equivalence fails, then when checking

their callers, RVT leaves the call to these functions as is and adds their code

to the related subprograms. We call this operation logical inlining 10, since it

enables us to use rule (proc-p-eq) as if the whole related subprogram is a

single function. This operation is only done if the callees are nonrecursive.

6. Fallback solution: k-equivalence If both syntactic and semantic checks fail

with a given pair of related subprograms (even after inlining, or when inlining

is impossible), RVT attempts to prove the k-equivalence of the correspond-

ing functions. During the k-equivalence check functions which were previously

10Inlining is a known term referring to embedding of the code of a function into its caller. We do
not do this embedding physically, rather only add the code to the related subprograms, and hence
we call it ‘logical’ inlining.
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proved to be equivalent can still be replaced by uninterpreted functions. Other

descendants can be added as is because the programs should not necessarily

be nonrecursive. k-equivalence, similarly to semantic checks, is decided with

CBMC.

Some more sophisticated proof strategies, which employ other combinations of

semantic, syntactic and k-equivalence are also supported by RVT. These are

described in Sect. 9.3.6.

When any of the semantic or k-equivalence checks fails, CBMC generates a coun-

terexample. This counterexample consists of two runs through the checked related

subprograms which begin with the same input values but end with different values

at output or check-points, and hence fail an assertion in the check-block. The coun-

terexample is concrete (actual executions of the compared programs) only when a

k-equivalence check is performed without uninterpreted functions.

To summarize, the verification conditions generated by RVT are simply small C

programs without loops or function calls, which contain portions of code from the two

compared programs, code that computes and stores the values in the check points, and

assertions that declare their pairwise equivalence. These assertions are then checked

with CBMC. Hence, the equivalence problem is reduced to an iterative application of

functional verification over a restricted type of program.

9.3.2 Pairing functions and variables between sides

RVT builds mapf using a mechanism that pairs functions. A similar pairing is done

between global variables. In practice it is not always able to achieve bijective pairing,

and as a result some of the functions and global variables are not paired.

Pairing functions is needed for two reasons. First, the decomposition algorithm

works in the granularity of functions; Second, functions are isolated from their callees

(by replacing paired functions with equal uninterpreted functions) in the process of

proving the equivalence of recursive functions, when using one of the three rules that
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were described in the first part of the thesis (recall that all rules were defined with

respect to a full mapping between the functions).

Pairing global variables between the two sides is necessary due to a related reason.

Whenever we use uninterpreted functions, we need to enforce the congruence relation,

which means that we need to recognize the variables that are the inputs and outputs

of the functions. These include not only the actual arguments of the functions but

also the global variables which are accessed by the function code or by any of the

descendants of this function in the call graph. Therefore we need to pair the global

variables between the two sides.

Pairing is done recursively, in a manner reminiscent of computing congruence

closure. The algorithm works on the parse trees of both programs, and, when it

decides to pair two nodes in these trees (where a node can be either a variable, a

function, or a type), it adds a pointer in both directions. Note that wrong pairing

does not affect soundness: pairing is used for generating the verification conditions,

and hence wrong pairing can only result in failing to prove program equivalence.

The pairing algorithm works top-down: it initially attempts to pair global vari-

ables and functions according to their names and types. Then, within paired functions

that are also syntactically equivalent up to variable names, it attempts to pair ele-

ments that appear in isomorphic locations. If these elements were already paired

we just check that the pairing according to this function agrees with the previous

one. Otherwise we issue a warning. This process is repeated until no new pairing is

discovered.

A pair of nodes n1,n2 are paired in our pairing algorithm if one of the following

conditions hold:

1. n1, n2 are the same generic C types.

2. n1, n2 are types defined by typedef with the same name and their types are

paired.

3. n1, n2 are complex types with the same name where the expression trees that
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define them are isomorphic, and isomorphic nodes representing identifiers are

paired.

4. n1, n2 are global variables with the same name and their types are paired.

5. n1, n2 are functions that have

• the same name,

• the same list of types of formal arguments,

• the same return type,

• there is a bijective relation B between the respective sets of global variables

read (written) by the two functions, such that v1, v2 ∈ B if and only if v1, v2

are paired.

6. n1, . . . , ni and n′1, . . . , n
′
i are paired (pair-wise) if they are the arguments of

paired functions. Note that the decision to pair functions is based of the types

of these arguments, i.e., the arguments are related together with their function.

7. n1 and n2 are variables assigned or used in isomorphic expression trees, whose

other nodes on both sides are already paired to one another.

8. n1 and n2 are complex types (not necessarily with the same name) with iso-

morphic expression trees, and they were used to qualify some paired variables

or functions.

9. n1 and n2 are struct components that have the same index (in the component

order of paired struct types) and the same type.

10. n1 and n2 are objects pointed to by paired pointers.

11. n1 and n2 are array items with the same index and their base pointers are

paired.



73

12. n1 and n2 are struct objects generated by malloc and their address was passed

after creation to paired pointers.

We apply these rules iteratively until no additional relation is added to the pairing.

Note that these heuristics depend on the order in which we apply the rules and traverse

the code. For example, consider a situation where on side 0 two different global

variables v1 and v2 were used in different unrelated functions f1 and f2 respectively.

Suppose that on side 1 there is a single global variable v3 in the role of both these

variables. If f1 is compared between the sides before f2 then v3 will be related to

v1. Otherwise v3 will be related to v2. Note that there is no valid pairing between

the variables in this case.

In addition to the pairing heuristic described above, RVT allows the user to declare

parts of the pairing manually in a separate file. It also allows the user to force

conversion of functions to uninterpreted functions in all check-blocks in which they

are used.

9.3.3 The main algorithm: simple recursion

The equivalence check in RVT, in its basic form, is presented in Algorithm 1. It is

based on traversing bottom-up the call graphs of the two programs to be compared.

This algorithm can be applied directly to two call graphs without loops of length

larger than 1 (i.e., no mutual recursion). The more general case is considered in

Sect. 9.3.4.

The algorithm as presented refers to a simplified problem, as follows:

• The algorithm is targeted for proving partial equivalence based on rule (proc-

p-eq). Rules (m-term) and (react-eq) will be discussed in Sects. 9.4.2

and 9.4.3.

• The algorithm does not handle check points: it merely attempts to prove that

the two programs return equal values given the same inputs. The treatment of

checkpoints is discussed at the end of this section.
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• As indicated in Sect. 9.3.1, when RVT fails to prove equivalence based on rule

(proc-p-eq), it uses CBMC to check for k-equivalence. In some cases CBMC is

even able to prove total equivalence (for this we need to add assertions that state

that no execution requires more than k iterations, and prove them). For sim-

plicity we ignore this mode here. Various strategies of combining the algorithm

with k-equivalence are described in Sect. 9.3.6.

We assume that the two programs are given to the algorithm after all loops were re-

placed with recursive functions (the translation procedure is described in Appendix C.1).

In addition, Algorithm 1 expects to receive a set map of pairs of functions that need

to be compared (normally map = mapf). This set does not necessarily include all

functions, but it should include as minimum all recursive functions.

Initially all nodes are unmarked. Each element 〈f, g〉 ∈ map is then annotated

with either “Equivalent” or “Failed” corresponding to the case that equivalence be-

tween f and g has been proven, or that the proof failed, respectively. If the algorithm

aborts before reaching all pairs the partial marking is still valid.

The algorithm progresses bottom-up on the call graphs, and updates the labels

to “Equivalent” or “Failed”. The progress on the graph is made by a procedure

next unmarked pair() (not presented) which returns the next unmarked pair in

map, according to a BFS order on the reversed call graph of side 0. This procedure

aborts if either all pairs are already marked, or it finds that the call-graphs are

inconsistent (inconsistency means that there are two pairs of functions 〈f, f ′〉 ∈ map
and 〈g, g′〉 ∈ map such that f is a descendant of g but f ′ is an ancestor of g′).11

We continue describing the labeling procedure. A syntactically equivalent pair

such that all its children are already marked by “Equivalent” (or, as a special case,

with no children in the respective call graphs), is marked “Equivalent”. Otherwise,

in line 5, the pair is checked for equivalence semantically.

The semantic equivalence check is conducted by verifying, with CBMC, that vari-

ous assertions hold in a single loop-free and recursion-free C program check-block(f, g)

11We consider inconsistency to be an unrealistic scenario in practice.
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that RVT constructs. CBMC returns true if the assertions hold and false other-

wise.

We proceed by describing check-block(f, g). Consider the maximal connected sub-

DAG rooted at f that contains only functions that are unpaired or marked “Failed”.

Let Sf denote this set of functions (excluding f). Sg is defined similarly with respect

to g. The program check-block(f, g) consists of the following elements:

1. The functions f ,g and all functions in Sf , Sg, such that

• Name collisions in global identifiers of the two programs are solved by

renaming.

• All calls to f, g are replaced with calls to UF(f),UF(g), respectively.

• For all 〈h1, h2〉 ∈ map such that h1, h2 6∈ {Sf ∪ Sg}, calls to h1, h2 are

replaced with calls to UF (h1), UF (h2). (Observe that 〈h1, h2〉 is marked

“Equivalent”).

2. A main() function:

• Assignment of nondeterministic but equal values to inputs of f and g.

• Calls to f, g.

• Assertion that the outputs of f and g are equal.

Several notes on the definition of check-block(f, g)

• The check-block is nonrecursive. This is because when a recursive pair 〈f, g〉 ∈
map is labeled “Failed” the algorithm aborts in line 8, and hence the code of

f, g will not be part of future check-blocks.12

• The code of each nonrecursive pair 〈f, g〉 ∈ map that is labeled “Failed” is

logically inlined when checking the equivalence of their parents, and possibly

more ancestors, until reaching a provably equivalent pair or reaching the roots.

12In practice RVT switches to k-equivalence in this case rather than aborting.
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This enables RVT to prove equivalence in case, for example, that some code was

moved from the parent to the child, but together they still perform the original

computation.

• The code of a pair 〈f, g〉 ∈ map that is proven to be equivalent does not partici-

pate in any subsequent check-block. It is replaced with uninterpreted functions

in all subsequent semantic checks, or disappears altogether if some ancestor pair

is marked “Equivalent” as well in each of its paths to the roots of the related

subprograms.

• The replacement of recursive calls of paired functions with uninterpreted func-

tions corresponds to isolation (see Definition 11). Recall that proving equiva-

lence of all paired isolated procedures also proves the partial equivalence of all

of them by rule (proc-p-eq).

Algorithm 1 A basic call-graph based algorithm for attempting to prove the equiv-
alence of pairs of functions.

Procedure Compare()
input: Call graphs CG1 and CG2 and a mapping map.
output: Marking of pairs in map with “Equivalent” or “Failed”.

1: 〈f, g〉 = next unmarked pair() . Bottom-up. Aborts if none.
2: if 〈f, g〉 are syntactically equivalent and all their children are marked by “Equiv-

alent” then
3: Mark 〈f, g〉 by “Equivalent”.
4: else
5: if CBMC(check-block(f, g)) then . Semantic check
6: Mark 〈f, g〉 “Equivalent”.
7: else
8: if f, g are recursive then abort.

9: Mark 〈f, g〉 “Failed”.

10: goto line 1.

Complexity Each pair in map is labeled at most once by either “Failed” or “Equiv-

alent”. Thus, if n = |map| = |mapf |, which, in turn, cannot be larger than the number
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Figure 17: Two call graphs for Example 9

of functions, then the algorithm performs not more than n syntactic and n semantic

checks.

Example 9. Consider the call graphs that are presented in Fig. 17. Assume that for

i = 1, . . . , 6 we have 〈fi, f ′i〉 ∈ map. All paired functions are syntactically equivalent

except functions f2 6= f ′2 and f6 6= f ′6 as marked on the right side of the figure. We

describe step by step the execution of Algorithm 1:

1. In line 3 pairs 〈f3, f
′
3〉, 〈f4, f

′
4〉 are marked “Equivalent”.

2. The program check-block(f2, f
′
2) is sent to CBMC. Now Sf ′2 = {f ′7} and hence

this program contains also the code of f ′7, whereas f3, f
′
3, f4, f

′
4 are replaced by

uninterpreted functions. Assume that this semantic check fails. Then the pair

〈f2, f
′
2〉 is marked “Failed”.

3. The program check-block(f6, f
′
6) is sent to CBMC. Assume that the check fails

and hence the pair is marked “Failed”.

4. The program check-block(f5, f
′
5) is sent to CBMC. Since Sf5 = {f6} and Sf ′5 =

{f ′6}, this program contains also f6, f
′
6. The recursive calls are replaced with

uninterpreted functions. Assume that this time the check succeeds. Then 〈f5, f
′
5〉

is marked “Equivalent” in line 6.

5. The program check-block(f1, f
′
1) is sent to CBMC. Now Sf1 = {f2} and Sf ′1 =

{f ′2, f ′7}. Hence, the respective call subgraphs contain also f2, f
′
2 and f ′7, whereas
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f3, f
′
3, f4, f

′
4, f5, f

′
5 are replaced with uninterpreted functions. Assume this check

succeeds. The algorithm marks 〈f1, f
′
1〉 by “Equivalent”.

At this stage all function pairs are marked by either “Equivalent” or “Failed” and the

algorithm terminates.

Theorem 4 (Correctness of Algorithm 1). Pairs marked by “Equivalent” by Algo-

rithm 1 are partially equivalent.

Proof. We give a proof sketch.

For each 〈f, g〉 which the algorithm marks “Equivalent”:

1. Let fE be the function f with all the functions in Sf logically inlined into f .

Define gE similarly with respect to Sg and g.

2. If 〈f, g〉 was marked “Equivalent” in line 3, then fE = f, gE = g and they are

syntactically equivalent. Therefore, 〈fEUP , gEUP 〉 (i.e., the isolated versions of

f and g, respectively) are computationally equivalent.

3. Now consider the case 〈f, g〉 was marked “Equivalent” in line 5. All pairs in

〈fEUP , gEUP 〉 were successfully proved computationally equivalent by CBMC.

4. Let Df be the subDAG which contains all successors of f . Define Dg similarly

with respect to g.

5. By line 1 when 〈f, g〉 is marked all the functions in Df , Dg were already marked

before.

6. This means that all isolated pairs in Df , Dg which were marked “Equivalent”

were proved to be computationally equivalent.

7. If we consider Df , Dg as two compared programs, then by rule (proc-p-eq) all

such function pairs in Df , Dg are partially equivalent.

8. Since 〈fE, gE〉 are partially equivalent then so is 〈f, g〉. This is because inlining

does not change the fact that f and g are computationally equivalent.
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9. Hence, pairs which are marked “Equivalent” are indeed equivalent.

Accounting for check points. If any of the functions in {f, g} ∪ Sf ∪ Sg con-

tain check-points then check-point and channel code are added to check-block(f, g)

as was explained in Sect. 9.2. Assertions that the sequences of values written to

the channels are equal are added to the main() function after calling the two root

functions f and g. This is not enough, however, if functions that are replaced with

uninterpreted functions include check points, because now these check point values

are not part of the sequence. We should verify, then, that the sequence of values

and calls to the uninterpreted functions is the same. This is similar to the notion

of call-output-seq-equiv that we saw in Sect. 7.1. In Sect. 9.4.2 we describe in more

detail how this check is implemented.

9.3.4 The main algorithm: mutually recursive functions

The code above describes the algorithm when there are no mutually recursive func-

tions, i.e., when the call-graphs do not contain any cycles of length > 1. In the

presence of mutually recursive functions the call-graphs contain larger cycles, or,

more generally, maximal strongly connected components (MSCCs). In an MSCC

each function has at least one callee in the same MSCC whose equivalence was not

proved yet. But as rule (proc-p-eq) suggests we can prove the whole MSCCs equiv-

alent by checking each of its functions in isolation, assuming they are all paired.

In practice not all functions in the MSCCs are paired, and even if they are, requir-

ing all functions in the MSCCs to be equivalent is possibly too strong of a requirement.

As we show it is sufficient to prove equivalent a subset of the paired functions that

constitute a feedback vertex set (a set of nodes that intersect all cycles) in the MSCCs.

After proving such a set equivalent, they can be replaced with uninterpreted functions

and then the other functions can be checked with the method of the previous section.

Algorithm 2 begins by constructing an MSCC DAG for each side:
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Definition 20 (MSCC DAG). An MSCC DAG is derived from the call graph by

collapsing each MSCC to a single node.

In this graph there is an edge from MSCC m1 to MSCC m2 if and only if a function

in m1 calls a function in m2. There are no self-loops.

Next, in line 2, we try to create a map mapm of all nodes in the MSCC DAGs

that represent recursive or mutually recursive functions. If f appears in an MSCC

and g in an MSCC on the other side and 〈f, g〉 ∈ mapf , then we pair these MSCCs.

If there is a contradiction in this process or there is no 1-1 and onto mapping between

the MSCCs (excluding nonrecursive functions), then RVT reverts to k-equivalence.

Otherwise, it progresses bottom up on the MSCCs DAG.

Algorithm 2 Call-graph algorithm with MSCCs.

Procedure CompareWithSCCs()
input: Call graphs CG1 and CG2.
output: Marking of pairs in mapf with “Equivalent” or
“Failed”.

1: Generate MSCC DAGs MD1 and MD2 from CG1 and CG2.
2: Generate a map mapm between recursive or mutually recursive functions in MD1

and MD2 that is consistent with mapf .
3: if such mapm does not exist then abort.

4: while ∃ 〈m1,m2〉 ∈ mapm unmarked with all children marked “Covered” do
5: Select nondeterministically a subset S of pairs of functions from m1,m2

that constitute feedback vertex sets of m1,m2.
6: for all 〈f, g〉 ∈ S do
7: if not CBMC(check-block’(f, g)) then abort.

8: for all 〈f, g〉 ∈ S do mark 〈f, g〉 as “Equivalent”.

9: Let map be all the pairs in m1,m2.
10: Remove all outgoing edges from nodes marked “Equivalent” in CG1, CG2.
11: Call Compare(CG1, CG2,map).
12: Mark 〈m1,m2〉 as “Covered”.

In line 5 the algorithm chooses nondeterministically a set S of paired functions

that constitute a feedback vertex set of both m1 and m2. The nondeterminism is

used only for simplifying the description of the algorithm. It can be determinized
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by attempting all minimal feedback vertex sets, until one is found that we can prove

equivalent.13 In practice, RVT initially attempts to take S as the entire set of pairs

in m1 and m2. If this fails, it removes from S pairs that it failed to prove equivalent.

This process continues until it succeeds or until S does not intersect all cycles. The

success of this step depends on the order of the checks.

Given S, we continue in line 7 by trying to prove the equivalence of each pair in S.

The program check-block’(f, g) is very similar to check-block(f, g) that was described

in the previous section, the only difference being that more functions are included, as

follows.

Now consider the maximal connected subDAG rooted at f that contains only

functions that are not marked “Equivalent” and are not in S. Let S ′f denote this set of

functions (excluding f). S ′g is defined similarly with respect to g.14 The construction

of the program check-block’(f, g) is identical to that of check-block(f, g), other than

the fact that we use S ′f , S
′
g rather than Sf , Sg, respectively.

If the proof succeeds for all pairs in S, we call Compare in line 11 to attempt

to prove equivalence of other functions in the MSCCs. Since Compare only works

on call graphs without loops larger than 1, we break all cycles in the call graphs in

line 10 by removing outgoing edges from nodes that are marked “Equivalent”. First,

we know that this breaks all cycles in the call graphs because we can reach this line

only after marking “Equivalent” all functions in S, which, recall, is a feedback vertex

set. Second, recall that these functions are replaced with uninterpreted functions in

Compare and hence their outgoing edges have no effect on the algorithm.

For simplicity of the presentation of Algorithm 2, we ignored the possibility of

proving equivalence by syntactic checks. In practice RVT also performs syntactic

checks: if a pair 〈f, g〉 ∈ S is syntactically equivalent, and all the functions in S ′f , S
′
g

are syntactically equivalent pair-wise, then it marks f, g as “Equivalent” and avoids

13Although there can be an exponential number of them in the size of the MSCC, observe that
large MSCCs in real programs are rare.

14The difference from the definition of Sf ,Sg that we used in Sect. 9.3.3 is that S ′f , S
′
g may include

unmarked nodes (in m1,m2).
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Figure 18: Two call graphs for Example 10

the semantic check.

Example 10. Consider the call graphs that are presented in Fig. 18. Assume that for

i = 1, . . . , 6 we have 〈fi, f ′i〉 ∈ mapf . All paired functions are syntactically equivalent

except functions f2 6= f ′2 and f6 6= f ′6 as marked on the right side of the figure. We

describe step by step the execution of Algorithm 2:

1. The vertices of the MSCC DAGs are (listed bottom-up, left-to-right):

MD1 = {{f3}, {f4}, {f6}, {f2, f5}, {f1}} and MD2 = {{f ′3}, {f ′4}, {f ′6}, {f ′2, f ′5},
{f ′1}}. The MSCC mapping mapm is naturally derived from mapf .

2. In line 5, S can be set to ∅ for both MSCC pairs {f3}, {f ′3} and {f4}, {f ′4}. Then,

in line 11 pairs 〈f3, f
′
3〉, 〈f4, f

′
4〉 are marked “Equivalent” and their respective

MSCCs are marked “Covered”.

3. Similarly, for MSCCs {f6}, {f ′6}, S can be set to ∅ and the pair 〈f6, f
′
6〉 is

checked by Compare. Assume that the check fails and hence the pair is marked

“Failed”. The MSCCs are marked “Covered”.

4. Assume that for the MSCCs {f2, f5}, {f ′2, f ′5} the algorithm chooses S = {f2, f
′
2}.

5. The program check-block’(f2, f
′
2) is sent to CBMC. In this check f3, f

′
3, f4, f

′
4 are

replaced by uninterpreted functions and the functions f5, f
′
5, f6, f

′
6 are inlined

(S ′f2
= {f5, f6}, S ′f ′2 = {f ′5, f ′6}). The calls to f2, f

′
2 in f5, f

′
5 are replaced with
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uninterpreted functions. Assume that this semantic check succeeds. Then the

pair 〈f2, f
′
2〉 is marked “Equivalent” in line 8.

6. The program check-block’(f5, f
′
5) is checked by Compare in line 11, where

map = 〈f5, f
′
5〉. In this case S ′f5

= {f6} and S ′f ′5 = {f ′6}. Hence this program

contains also f6, f
′
6, and the calls to f2, f

′
2 are replaced with uninterpreted func-

tions. Assume that the check succeeds. Then, 〈f5, f
′
5〉 is marked “Equivalent”.

The MSCCs {f2, f5}, {f ′2, f ′5} are marked “Covered”.

7. The pair 〈f1, f
′
1〉 is checked by Compare (again S = ∅) and marked “Equiva-

lent”. Their MSCCs are marked “Covered”.

At this stage all MSCCs are marked “Covered” and the algorithm terminates.

Theorem 5. Pairs marked by “Equivalent” by Algorithm 2 are partially equivalent.

Proof. We give a proof sketch.

• Consider some pair of MSCCs m1,m2 and a subset S as defined in line 5.

• For each 〈f, g〉 ∈ S let fE be the function f with all the functions in S ′f logically

inlined into f . Define gE similarly with respect to S ′g and g.

• If all pairs in 〈fEUP , gEUP 〉 (i.e., the isolated versions of fE and gE, respectively)

are successfully proved equivalent in line 7, by rule (proc-p-eq) this means that

all pairs 〈fE, gE〉 are partially equivalent.

• Since 〈fE, gE〉 are partially equivalent then so is 〈f, g〉. This is because inlining

does not change the fact that f and g are computationally equivalent.

• Hence, pairs in S are marked “Equivalent” only if they are indeed equivalent.

• The only remaining unmarked functions that are reachable from m1,m2 are in

(S ′f ∩ m1) and (S ′g ∩ m2) (this is because function pairs in S ′f , S
′
g outside of

m1,m2 are already marked “Failed”). By correctness of Compare, these pairs
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are marked correctly. Note that the call graphs that we send to Compare are

forests due to line 10, and hence the check-blocks that it checks are nonrecursive.

9.3.5 Unbounded structures

Deciding the truth of formulas with uninterpreted functions requires comparing ar-

guments of instances of such functions, or their outputs. If some of these arguments

are pointers, such a comparison is meaningless. In this section we describe RVT’s

method of treating pointer arguments of functions and dynamic data structures, and

also show why this method fails in the presence of aliasing.

Whereas in nonpointer variables the comparison is between values, in the case

of pointer variables the comparison should be between the data structures that they

point to. A dynamic data structure can be represented as a graph whose vertices are

structs and edges are the pointers that point from one struct to the other. We call

such graph a pointer-element graph. Based on this representation we define equality

of structures:

Definition 21 (Iso-equal structures). We say that two structures are iso-equal if

their pointer-element graphs are isomorphic and the values at structs related by the

isomorphism are equal.

RVT checks for bounded iso-equality. It makes a simplifying assumption that the

data structure is a tree (we were not able to generalize the solution to an arbitrary

structure)15. Let p1, p2 be paired pointer variables that are arguments to the functions

15We tried to implement more elaborate solutions, but CBMC was unable to cope with the sizes
of the resulting verification goals even for the simplest structures. We tried two alternatives for
uninterpreted bounded structure construction: (1) Generate the structure on-the-fly during the run
of the function. We used tokens to track which pointers in the function must point to the same
object. This info is needed at each dereference operation to determine the value accessed by the
dereference. (2) Analyze the function in advance to find all possible structure forms. The Analysis
should be done on the SSA (see Sect. 5) form of the function.

As no function contains loops, the check-block code for both the above alternatives should generate
only small bounded structures. In both cases we should take into account all possible aliasing inside
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that we wish to compare. RVT generates a nondeterministic tree-like data structure

of a depth corresponding to a bound (see below) and make both p1 and p2 point

to it. This guarantees that the input structure is arbitrary but equivalent, up to a

bound and under the assumption that it is a tree, on both sides. A similar strategy

is activated when we compare p1 and p2 that point to an output of the compared

functions.

What should be the bound on the depth of the arbitrary data structure? Recall

that the code of the related subprograms that we check does not contain loops or

recursion, and hence there is a bound on the maximal depth of the items this code

can access in any dynamic data structure that is passed to the roots of the related

subprograms. It is possible, then, to compute this bound, or at least overestimate it,

by syntactic analysis. For example, searching for code that progresses on the structure

such as n = n -> next for a pointer n. Such a mechanism is not implemented yet

in RVT, however, and it relies instead on a user-defined bound. When checking

k-equivalence, dynamic data structures are unwound k times this bound.

Aliasing. Recall that in general aliasing between pointers that are function argu-

ments is unacceptable by our method. The programs in figures 19 and 20 demonstrate

how argument passing by reference with aliasing invalidates the (proc-p-eq) rule.

void div1(int x, int y,

int* out_d,

int* out_r)

{

if( y == 0 )

return;

*out_d = x/y;

*out_r = x % y;

}

void div2(int x, int y,

int* out_d,

int* out_r)

{

if( y == 0 )

return;

*out_r = x % y;

*out_d = x/y;

}

Figure 19: Two allegedly equivalent C functions.

If we perform a semantic check on the two functions in figure 19 we will be

convinced that “out r” and “out d” point to equal output values on both sides. This

the structure and generate nondeterministic code which can generate each of them. This was the
part of the solutions which CBMC failed to support.
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int main() {

int result;

div1(5, 2,

&result, &result);

return result;

}

int main() {

int result;

div2(5, 2,

&result, &result);

return result;

}

Figure 20: These two programs call the div1 and div2 procedures from Fig. 19, but
return different results due to aliasing.

is because when the addresses “out r” and “out d” of the output values are different,

the only difference between the functions is the order of calculation. But when we

use the functions as in figure 20 both these variables will point to the same “result”

variable and its value at the end of main() will be x%y on one side but x/y on the

other.

It is possible to add an assertion to the generated check-block that checks that no

aliasing is possible between function arguments, and this way guarantee soundness.16

9.3.6 Proof strategies

RVT supports several proof strategies which try various combinations of semantic-

equivalence and k-equivalence checks. These are:

k-equivalence The only check-block contains all functions in both programs, and

CBMC unwinds all recursions k times. A counterexample is real as long as

external (bodyless) functions are implemented or have no influence. CBMC has

an option of adding assertions (called “unwinding assertions”) with which we

can check that the given bound k is sufficient, i.e., no execution requires more

than k iterations. The assertions state that the guard of a loop construct is not

satisfied at the end of the k-th iteration. When using this option, a ‘verification

successful’ result implies that the programs are totally equivalent.

Alternating A hybrid strategy between pure k-equivalence as described above and

16RVT does not support this option yet.



87

pure semantic checks. Whenever the semantic check fails or is impossible be-

cause the related subprograms are recursive, we invoke k-equivalence on these

related subprograms. There can be three outcomes to this check:

Equivalent CBMC is able to prove k-correctness while using unwinding asser-

tions as described above,

k-equivalent The same as above, without the unwinding assertions, and

Failed k-equivalence CBMC finds a counterexample to k-equivalence. Note

that this does not necessarily mean that the two functions are indeed

k-different, because the counterexample can be spurious due to the use

of uninterpreted functions in the check-block (recall that uninterpreted

functions abstract the real computations).

In the first case RVT marks the pair of nodes “Equivalent”. In the second

it marks them “k-Equivalent”, and continues as if they were equivalent (re-

places them with uninterpreted functions when checking their parents), but

from hereon, all its ancestors can only be proven to be k-equivalent. In the last

case the pair is marked “Failed”.

Note that since semantic checks (as described in Sect. 9.3.3) amounts to checking

a check-block with no recursion, it corresponds to a k-equivalence check with

bound equal to 1. Hence RVT in practice invokes CBMC with this file and a

bound k, which becomes relevant only if the check-block is recursive. Hence for

each related subprograms pair only a single proof effort is made.

Hybrid RVT first activates syntactic and semantic checks as described in Algo-

rithm 2. If it is able to prove the equivalence of main() then the two programs

are partially equivalent. Otherwise it switches to k-equivalence, while still re-

placing functions that were proved equivalent in the first phase with uninter-

preted functions. Here too, a counterexample can be spurious.
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9.4 uninterpreted functions, call-sequence equivalence and

reach-equivalence

In this section we consider the implementation of uninterpreted functions, call-sequence

equivalence and reach-equivalence, in this order.

9.4.1 Implementation of uninterpreted functions

CBMC does not support uninterpreted functions directly, as its input language is C.

To implement uninterpreted function we replace the bodies of a pair of paired func-

tions with bodies which adhere to the functional congruence (3.1) or more precisely,

its version that includes global variables.

Let 〈f, g〉 ∈ mapf be functions that we wish to make uninterpreted, and assume

that f is on side 0. Each call to f is characterized by a tuple of input values and a

tuple of output values. Note that the inputs include global variables that are read in

the body of this function or any of its descendants. Similarly, the outputs include,

in addition to the return value and values written to variables that were passed to

the function by reference, the global variables that are written to in the body of

this function and any of its descendants. The output values on side 0 are chosen

nondeterministically. We define a structure UF-struct that holds these two tuples.

Then, if there are n calls to f in side 0 (recall that this is done in the context of

loop-free and recursion-free programs), we declare an array UF-array of size n and

type UF-struct, and update it accordingly.

The implementation of g in side 1 is as follows. g scans the array UF-array: if

g’s inputs are equivalent to the inputs in entry i of UF-array, for 0 ≤ i < n, then g’s

outputs are assigned the values of the outputs in the same entry i. Otherwise they

are assigned nondeterministic values.

A formalization of this method requires the following definition:

Definition 22 (Extended prototype). An extended prototype of a function is a tuple

consisting of:
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• the list of types corresponding to the formal arguments,

• the type of the returned value,

• the sets of global variables which are read and written by the function and its

successors in the call graph.

Two extended prototypes are said to be equivalent if they have the same list of

types of formal arguments, the same type of returned value, and there is a bijection B
between the globals of both sides, such that if globals g1, g2 ∈ B then they are paired.

Using this definition we reformulate the uninterpreted function condition (congru-

ence). Let f and f ′ be two functions with the same extended prototype which are

replaced by some uninterpreted function H. Let I and I ′ respectively be the tuples

of their input arguments, O and O′ be the tuples of their output arguments, Gr and

G′r be the sets of global variables they read from, Gw and G′w be the sets of global

variables write to, v and v′ be their return values. We assume that each argument and

global variable is paired to its counterpart. Then the congruence condition between

them is:

(
∨

a∈I
a = a′ ∧

∨

gr∈Gr
gr = g′r ) −→ ( v = v′ ∧

∨

o∈O
o = o′ ∧

∨

gw∈Gw
gw = g′w ) (9.2)

Following is an example of an implementation of this behavior: These are the two

versions of the recursive GCD function:

unsigned gcd_rec(unsigned a, unsigned b)

{

unsigned g;

if (b == 0)

g = a;

else {

a = a % b;

g = gcd_rec(b, a);

}

return g;

}

unsigned gcd_rec(unsigned x, unsigned y)

{

unsigned z;

z = x;

if (y > 0)

z = gcd_rec(y, z % y);

}

return z;

}

Figure 21: Two recursive C functions to calculate GCD.
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Following is the implementation of the uninterpreted function that replaces them.

The UF-struct, the UF-array and the index counter in the UF-array for each side:

typedef struct

rv_UF_gcd_rec_struct_tag {

unsigned in_a;

unsigned in_b;

unsigned out_retval;

} rv_UF_gcd_rec_struct;

rv_UF_gcd_rec_struct rv_UF_gcd_rec_array[UF_ARRAY_LEN];

int rv_UF_gcd_rec_count[2] = {0,0};

The code which implements the uninterpreted function on side 0:

unsigned rvs0_gcd_rec(unsigned a, unsigned b) {

unsigned retval;

/* check UF-array bound: */

assert(rv_UF_gcd_rec_count[0] < UF_ARRAY_LEN);

/* save values of input arguments and globals: */

rv_UF_gcd_rec_array[rv_UF_gcd_rec_count[0]].in_a = a;

rv_UF_gcd_rec_array[rv_UF_gcd_rec_count[0]].in_b = b;

/* generate and save values of return, output arguments and globals: */

rv_UF_gcd_rec_array[rv_UF_gcd_rec_count[0]].out_retval

= retval = (unsigned )nondet_int();

rv_UF_gcd_rec_count[0]++;

return retval;

}

The code which implements the uninterpreted function on side 1:

unsigned rvs1_gcd_rec(unsigned a, unsigned b) {
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unsigned retval;

_Bool found = 0;

_Bool equal = 1;

int rv_uf_ind = rv_UF_gcd_rec_count[0]-1;

for(; rv_uf_ind >= 0; rv_uf_ind--) {

equal = (rv_UF_gcd_rec_array[rv_uf_ind].in_a == a);

equal = equal && (rv_UF_gcd_rec_array[rv_uf_ind].in_b == b);

if( equal ) {

found = 1;

break;

}

}

if( found ) { /* input values were found among saved values */

retval = rv_UF_gcd_rec_array[rv_uf_ind].out_retval;

} else {

retval = (unsigned )nondet_int();

}

rv_UF_gcd_rec_count[1]++;

return retval;

}

Note the function name prefixes “rvs0 ” and “rvs1 ”. They are needed as the two

functions are placed together in the same check-block.

To increase the efficiency of the decision procedure we use several techniques which

decrease the actual size of the possible executions of each check-block. A proper

implementation of an uninterpreted function should compare each tuple of call inputs

to all the call input tuples on both sides. Thus, if the number of uninterpreted

function calls in an execution is C, we will need Ω(C2) tuple compares to implement

the uninterpreted function behavior. RVT allows the user to attempt a simpler proof,

in which two simplifying assumptions are made. First, that the programmer does not

call the same function twice with exactly the same inputs in a single execution of
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the caller’s body. Instead, he/she will probably keep the result in a local variable

and use it twice. Therefore, RVT compares the input tuples only between sides,

in the uninterpreted function code of side 1. Also, even if some function is called

with the same inputs twice on one side it is improbable that the proof of equivalence

depends on this. A similar optimization was made in [31], in the context of translation

validation.

The second assumption is that as we compare programs which should be similar,

the order of the calls to the uninterpreted function is more or less the same. In other

words, we assume that if an input tuple t appeared at the k-th call to uninterpreted

function F on side 0, and if the currently checked related subprograms are equivalent,

then the tuple t should appear in some k′-call on side 1, such that k− d < k′ < k+ d

for some small d. Therefore we only compare each tuple encountered during execution

of side 1 of the check-block with 2d− 1 tuples on the other side. We call this value d

the look-back value. The user may set the value by the “-lb” command line option.

This practice effectively reduces the number of tuple comparisons to O(C · d).

Note that the above simplifications may only decrease the completeness of RVT but

conserves its soundness.

Bodyless functions. Many times not all the executable code of the program is

available for comparison. Some of the code is implemented in standard libraries and

is not available to the user. Also, other code may be implemented in separate modules

which were not changed between the two versions of the program. We call bodyless

functions the functions whose body is not included in the compared code (only their

prototype is included). We assume that the implementation of all bodyless functions

were not changed between the compared versions. Therefore, we can assume that they

are equivalent on both sides and we can replace them with uninterpreted functions.

Note that such treatment is only good if the user knows that no bodyless function

accesses global variables, as without the code of the function we can not collect the

global variables that it or its descendants access. If the user is not sure that all

bodyless functions were not changed, he/she can use the “-noextufs” flag of the tool
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UF (f) UF (f)

f f

Figure 22: Each dot represents writing to the channel. The top drawing shows a
possible sequence of such values written to a channel in a given function. Some
of the values are written within the callee function f . After replacing f with an
uninterpreted function UF (f), we should check that f is called in the same location
in this series of values as its counterpart on the other side.

to override the replacement. In such a case he/she must supply at least stub code to

all functions reachable in the call graphs from the main() functions.

9.4.2 Call-sequence and call-output-sequence equivalence

We now consider the problem of proving call-sequence equivalence, which is needed

when checking the equivalence of sequences of checkpoints as explained in the end

of Sect. 9.3.3. A simple modification of this check gives us also call-output-sequence

equivalence, which, recall, is needed for proving rule (react-eq) (see the definition

of the predicate call-output-seq-equiv in Sect. 7.1).

Here we consider the former problem. As explained in Sect. 9.3.3, if callees 〈f, g〉 ∈
mapf that are replaced with uninterpreted functions contain check points, we should

consider the order in which they are called. In other words, rather than only checking

that the series of values written to a given channel is the same on both sides, we

should instead check that the series of such values and calls to paired uninterpreted

functions is the same. This mixed series (values and function calls) is illustrated

in Fig. 22. By this we rely on the fact that inside the body of f and g and their

descendants the order of writes to the channels was already verified when f and g

were proven equivalent. The generalization of this solution to multiple such pairs of

callees that were replaced with uninterpreted functions is straightforward.

We can implement these checks right before each call to an uninterpreted function.



94

In RVT these checks are in fact implemented inside the code that simulates uninter-

preted functions, as was explained in Sect. 9.4.1. We add to the code implementing

the uninterpreted functions of the callees f and g code that inserts a nondeterministic

value to the same channel(s) which are accessed by their bodies or their descendants.

The same value is saved as part of the UF-struct on side 0 and is retrieved from it on

side 1 and passed to the same channel on side 1. In this way this nondeterministic

value becomes part of the output values tuple in the UF-struct.17 Now, if these non-

deterministic values appear at the same places in the channels on both sides, then the

callees that generated them were called under the same conditions (guards) and in

the same order. Each nondeterministic value can be thought of as a signature of the

call during which it was generated. In this way, we add the signatures of the calls to

the channel sequences on both sides making them effectively call-output-sequences.

The same mechanism is added to uninterpreted functions which replace functions

that read inputs from some input device or their descendants read inputs. Such

uninterpreted functions should write non-deterministic values to all channels which

are included in the check-block.

When checking call-output-sequence equivalence we use a special channel for record-

ing output values, in the same way.

Example 11. The following code implements an uninterpreted function with code for

checking call-sequence equivalence as explained above. It is the code for the gcd rec()

function (Fig. 21), assuming it contains a check-point, which is associated with the

default channel. We add to the UF-struct an “unsigned char nondet seq equiv;” which

will keep the non-deterministic value. The new uninterpreted function code for sides

0 and 1 is:

unsigned rvs0_gcd_rec(unsigned a, unsigned b)

{

unsigned retval;

unsigned char nondet_seq_equiv;

17RVT represents this nondeterministic value with a single byte, as the number of expected func-
tion calls in the related subprograms is expected to be smaller than 256.
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/* check UF-array bound: */

assert(rv_UF_gcd_rec_count[0] < UF_ARRAY_LEN);

/* save values of input arguments and globals: */

rv_UF_gcd_rec_array[rv_UF_gcd_rec_count[0]].in_a = a;

rv_UF_gcd_rec_array[rv_UF_gcd_rec_count[0]].in_b = b;

/* generate and save values of output arguments and globals: */

rv_UF_gcd_rec_array[rv_UF_gcd_rec_count[0]].out_retval

= retval = (unsigned )nondet_int();

rv_UF_gcd_rec_count[0]++;

nondet_seq_equiv = (unsigned )nondet_int();

rv_UF_gcd_rec_array[rv_UF_gcd_rec_count[0]].nondet_seq_equiv

= nondet_seq_equiv;

RVSAVE(&RV_DEF_CHANNEL,1,nondet_seq_equiv);

return retval;

}

unsigned rvs1_gcd_rec(unsigned a, unsigned b)

{

unsigned retval;

unsigned char nondet_seq_equiv;

_Bool found = 0;

_Bool equal = 1;

int rv_uf_ind = rv_UF_gcd_rec_count[1];

if( rv_uf_ind > rv_UF_gcd_rec_count[0]-1 )

rv_uf_ind = rv_UF_gcd_rec_count[0]-1;

{

equal = (rv_UF_gcd_rec_array[rv_uf_ind].in_a == a);

equal = equal && (rv_UF_gcd_rec_array[rv_uf_ind].in_b == b);

if( equal ) {
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found = 1;

}

}

if( found ) /* input values were found among the saved values */

{

retval = rv_UF_gcd_rec_array[rv_uf_ind].out_retval;

nondet_seq_equiv = rv_UF_gcd_rec_array[rv_uf_ind].nondet_seq_equiv;

RVCHECK(&RV_DEF_CHANNEL,1,nondet_seq_equiv);

} else {

/* Assert call-sequence equivalence: call inputs must be the same. */

assert( 0 );

}

rv_UF_gcd_rec_count[1]++;

return retval;

}

RVT adds generation and saving to the default channel of the nondet seq equiv

value to the code of side 0, and its retrieval and value check to the code of side 1.

Note that in the code of side 1 above there is no loop and the only UF-struct we look

at in the UF-array is the one at the current index of “rv UF gcd rec count[1]”. This

is because the sequence of calls to the uninterpreted function must be exactly the same

on both sides and thus the index of the related calls is the same.

9.4.3 Reach equivalence

We now consider the problem of proving reach equivalence, which is necessary for rule

(m-term). To prove reach-equivalence for two isolated related subprograms, we need

to show that for argument-equivalent executions of the related subprograms, for every

call to a function f in the execution on side 0 there is a call to a function g in the

execution on side 1 (and vice-versa) such that 〈f, g〉 ∈ mapf and the calls are with

equal arguments. Our semantic-check mechanism for computational equivalence, as
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described in Sect. 9.3.3 in the context of checking rule (proc-p-eq), already enforces

argument-equivalent executions. For reach-equivalence check, we should add to this

mechanism:

1. an assertion that any input tuple (i.e., the arguments of the callee) on side 1 is

found in the UF-array, and

2. a check that for every UF-struct of the UF-array its input tuple was found to

be equivalent to some input tuple on side 1.

These checks can be implemented by the corresponding changes in the uninterpreted

function code of side 1:

1. add assertion which fails if the input tuple was not found by the “for” loop, and

2. add a Boolean flag (called “reach equiv flag”) to the UF-struct which will be

false by default, let the “for” loop go over all the UF-array and set to true the

flag of each UF-struct whose input tuple is equal to the received input tuple.

At the end of the check-block code add a check that all these reach equiv flags

were set to true.

Note that as the check is performed in the code that implements an uninterpreted

function the calls we compare are to paired functions. This satisfies the remaining

condition of reach-equivalence.

Example 12. Below is an example of an implementation of the reach-equivalence

check for the gcd rec() function that we considered in Sect. 9.4.2. We add to the

UF-struct (rv UF gcd rec struct) another Boolean field “reach equiv flag;” which is

initialized to 0 (false) when side 0 fills the UF-struct. The change in the code of side

1 is:

unsigned rvs1_gcd_rec(unsigned a, unsigned b) {

unsigned retval;
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_Bool found = 0;

_Bool equal = 1;

int rv_uf_ind = rv_UF_gcd_rec_count[0]-1;

for(; rv_uf_ind >= 0; rv_uf_ind--) {

equal = (rv_UF_gcd_rec_array[rv_uf_ind].in_a == a);

equal = equal && (rv_UF_gcd_rec_array[rv_uf_ind].in_b == b);

if( equal ) {

found = 1;

rv_UF_gcd_rec_array[rv_uf_ind].reach_equiv_flag = 1;

}

}

if( found ) { /* input values were found among the saved values */

retval = rv_UF_gcd_rec_array[rv_uf_ind].out_retval;

} else {

/* Assert reach-equivalence:

side 1 inputs must appear on side 0. */

assert( 0 );

}

rv_UF_gcd_rec_count[1]++;

return retval;

}

The “assert(0)” at the lower part of function rvs1 gcd rec() checks that all call

configuration of side 1 were also reached by side 0.

Additionally, in the main code of the check-block we add a check that all the

reach equiv flag bits are set to 1 (true) in all used UF-structs of all uninterpreted

functions which appear in this check-block. This checks that all function calls reached

by side 0 were also reached by side 1, and with the same argument values.

Recall that if all functions passed the computational equivalence check (as de-

scribed in Sect. 9.3.3) and the reach-equivalence check as presented here, then we can

conclude that the programs are mutually terminating.
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9.5 Experiments

We have tested RVT on several synthetic and limited-size industrial programs and

attempted to prove equivalent different versions of these programs. The programs are

described below.

9.5.1 Synthetic programs

The small synthetic programs which we have checked:

• The GCD program on which many examples in this thesis are based. It calcu-

lates the greatest common divisor of two integers. The program was tested in

two versions: with a simple function containing a loop and a version with only

a recursive function.

• The simple loops test that contains four different functions with loops that cal-

culate power, sum of factors and sum of hexadecimal digits on integer numbers.

• A C version of the HPcalc test that is used as an example in figure 14.

• MSCC1 is a simple program that tests the execution of RVT on programs with

MSCCs.

• cr1 and cr2 test RVT on functions which perform evaluation of a numeric ex-

pression represented as a dynamically-allocated structure.

We compared each of these programs with small modifications thereof. Some

changes kept the programs equivalent and others made them different. In all cases,

when the programs were equivalent, RVT proved their partial equivalence within

seconds up to a minute. When checking the same programs for k-equivalence, it took

RVT several minutes up to several hours for k up to 5. For higher values of k, the test

many times could not prove k-equivalence even after more than 10 hours. In the case

of nonequivalent programs, both the k-equivalence and the semantic-checks found a

separating execution of the programs in several seconds.
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Recall that in the process of semantic checks, paired functions that cannot be

proven equivalent, are (logically) inlined. Our experience was that in such cases the

proof becomes too hard: the decision procedure runs for hours or even fails to reach

a decision at all. Executing k-equivalence with a low k value instead would reveal the

nonequivalence much faster.

Interestingly, we have found in the examples above that if we isolate ‘hard’ oper-

ators (i.e., operators that their Boolean representation burden the SAT solver) such

as multiplication (*), division (/) and modulo (%) into separate functions, this many

times solves the computational problem. The reason is that these separate functions

are replaced by uninterpreted functions, and hence the execution time of semantic-

checks and especially k-equivalence on these tests decrease dramatically. For example,

in the case of k-equivalence with k = 6 on equivalent programs it would decrease the

time of simple loops from tens of hours to less than a minute. This means that a big

part of the k-equivalence test complexity lies in such operators.

Bigger programs that do not use arrays are very rare. Since we did not finish

the implementation of a solution to the case of arrays as arguments to functions, we

could not find suitable large programs to check.18 Instead, we developed an auto-

matic program generator (called “gen prog”) to generate sizable random programs in

several close versions and then test them using RVT. The programs are generated by

randomly building a parse tree of a program. These programs include many function

calls, including recursive and mutually recursive calls. The user specifies the proba-

bility to generate each type of variable, block, or operator. Variables can be global,

local or formal arguments of functions. Types can be basic C types, structures or

pointers to such types, but not arrays.

Also, small differences in versions are introduced in random places by enclosing

some statements in “#ifdef RV DIFF” directives. This way, using the C compiler

preprocessor (CPP) and choosing different defines in different times one can generate

several close but not identical versions. We used gen prog to generate random yet

18RVT can handle a restricted case in which the arrays are ‘read-only’.
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executable C programs with up to 20 functions and thousands of lines of code.

When the random versions are equivalent, RVT proves them to be partially-

equivalent relatively fast: from seconds to half an hour. On non-equivalent versions,

on the other hand, attempts to prove partial equivalence may run for many hours or

run out of memory. Retreating to k-equivalence sometimes solves the problem, but

not always as the programs are too big even for low values of k.

9.5.2 Industrial programs

We also tested our tool on several limited-size industrial programs. These are:

TCAS (Traffic Alert and Collision Avoidance System) is an aircraft conflict detection

and resolution system used by all US commercial aircraft. We used a 300-line

fragment of this program that was also used in [16].

MicroC/OS The core of MicroC/OS which is a low-cost priority-based preemp-

tive real time multitasking operating system kernel for microprocessors, written

mainly in C. The kernel is mainly used in embedded systems. The program is

about 3000 lines long.

Matlab examples Parts of engine-fuel-injection simulation in Matlab which was

generated in C from engine controller models. The tested parts contain several

hundreds lines of code and use read-only arrays.

All these tests exhibit the same behavior as the syntactic tests above. For equiv-

alent programs, semantic-checks were very fast, proving equivalence in minutes. In

the case of non-equivalent programs after initial failure to prove equivalence using

semantic-checks, k-equivalence would sometimes succeed to show a difference between

the two versions of the program, but mostly on variations of the TCAS example, which

is the smaller of the three programs listed above.
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10 Future work and summary

We divide the list of future work items to implementation issues and further research

directions.

• Implementation issues.

Arrays. RVT currently does not support programs with arrays (unless these

are read-only arrays), which most industrial programs use.

Rules (m-term) and (react-eq). The implementation of these two rules in

RVT is not finished.

• Future research directions.

Checking real code revisions. Once RVT is capable of proving significant

industrial programs, it will be interesting to see whether it is capable of

proving the equivalence of two versions of code that reflect a real change

(e.g., checking consecutive revisions in a CVS archive). A related software-

engineering question is to examine the ideal gap between programs to apply

regression verification (a question that also applies to regression testing).

Characterizing the strength of the inference system. Checking the strength

of the rules with respect to real code changes - which types of correct code

transformations that are in practical use can these rules prove.

Integrate additional static analysis techniques. For example, it could be

that a large part of the code cannot affect the equivalence of two procedures

that we wish to prove equivalent. Slicing of the program can remove the

irrelevant code in such a case.

Summary We started the introduction by mentioning Tony Hoare’s grand chal-

lenge, namely that of building a verifying compiler, and by mentioning that proving

equivalence is a grand challenge in its own right, although an easier one. In this thesis

we started exploring this direction in the context of real programs written in C.
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The main contributions of the thesis can be summarized as follows:

1. Introducing various notions of equivalence (some of which were already consid-

ered in the past).

2. Introducing inference rules for proving equivalence of recursive programs, ac-

cording to the various equivalence notions. Each rule is accompanied by a proof

of soundness.

3. Introducing a method for an automatic, incremental proof, based on isolating

functions from their callees and abstracting them with uninterpreted functions.

This method keeps the verification conditions decidable and small relative to the

size of the input programs. Our algorithm initially compares functions syntacti-

cally which, under certain conditions, circumvents the need to call the decision

procedure. Such preliminary syntactic checks simplify the process significantly

in the case targeted in this work, namely of comparing programs that have large

parts of equal code. It also helps meeting our goal, as stated in the introduction,

of attempting to keep the complexity sensitive to the changes rather than to

the original size of the compared programs. Only if the syntactic checks are

unable to conclude that functions are equivalent, it invokes the more expensive

semantic checks based on the rules and the decision procedure CBMC.

4. Developing methods for applying the above rules and algorithms to C programs.
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A Formal definitions for Section 7

Definition 23 (Input/output subsequences of a subcomputation).

Let π′ be a subcomputation of a computation π. If π ′ is finite then the input subse-

quence of π′ is the prefix sequence QIN that satisfies first[π′].R = QIN · last[π′].R and

the output subsequence of π′ is the tail sequence QOUT that satisfies first[π′].W ·
QOUT = last[π′].W . If π′ is infinite then the input subsequence of π′ is simply

first[π′].R and the output subsequence of π′ is the tail sequence QOUT that satisfies

first[π′].W ·QOUT = OutSeq[π]. �

Less formally, an input subsequence of a subcomputation π ′ is the subsequence of

inputs that is ‘consumed’ by π′, whereas the output subsequence of a subcomputation

π′ is the subsequence of outputs of π′.

We mark the input subsequence of π′ by ∆R[π′] and its output subsequence by

∆W [π′].

In all subsequent definitions P1 and P2 are LPL+IO programs.

Definition 24 (Reactive equivalence of two procedures).

Given two procedures F ∈ Proc[P1] and G ∈ Proc[P2] such that 〈F,G〉 ∈ mapf , if

for every two subcomputations π′1 and π′2 that are input equivalent with respect to F

and G it holds that ∆W [π′1] = ∆W [π′2] then F and G are reactively equivalent. �

Denote by reactive-equiv(F,G) the fact that F and G are reactively equivalent.

Definition 25 (Return-values equivalence of two reactive procedures).

If for every two finite subcomputations π ′1 and π′2 that are input equivalent with

respect to procedures F and G it holds that

last[π′1].σ[arg-wF ] = last[π′2].σ[arg-wG]

then F and G are Return-values equivalent. �

(Recall that input-equivalent subcomputations are also argument-equivalent and

hence maximal – see Definition 9).
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Denote by return-values-equiv(F,G) the fact that F and G are return-value

equivalent.

Definition 26 (Inputs-suffix equivalence of two reactive procedures).

If for every two finite subcomputations π ′1 and π′2 that are input equivalent with

respect to procedures F and G it holds that

∆R[π′1] = ∆R[π′2] ,

then F and G are Inputs-suffix equivalent. �

Denote by input-suffix -equiv(F,G) the fact that F and G are inputs-suffix equiv-

alent.

Definition 27 (Output configuration). A configuration C is an output configuration

if current-label[C] = before[output(e)]. �

Definition 28 (Call and output sequence of a subcomputation). The call and output

sequence of a subcomputation π′ contains all the call and output configurations in π ′

in the order in which they appear in π′. �

Definition 29 (Call and output sequence equivalence between subcomputations).

Finite subcomputation π′1 and π′2 from some levels are call and output sequence equiv-

alent if the call-and-output-sequences CC1 of π′1 and CC2 of π′2, satisfy:

1. |CC1| = |CC2|

2. If for some i ∈ {1, . . . , |CC1|}, current-label[(CC1)i] = before[call p1(e1;x1)]),

then

• current-label[(CC2)i] = before[call p2(e2;x2)],

• 〈p1, p2〉 ∈ mapf , and

• (CC1)i.σ[e1] = (CC2)i.σ[e2].
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3. If for some i ∈ {1, . . . , |CC1|}) current-label[(CC1)i] = before[output(e1)]),

then

• current-label[(CC2)i] = before[output(e2)], and

• (CC1)i.σ[e1] = (CC2)i.σ[e2].

�

Extending this definition to procedures, we have:

Definition 30 (Call and output sequence equivalence of two procedures). Given two

procedures F ∈ Proc[P1] and G ∈ Proc[P2] such that 〈F,G〉 ∈ mapf , if for every two

finite subcomputations π′1 and π′2 that are input equivalent with respect to F and G

it holds that π′1 and π′2 are call and output sequence equivalent, then F and G are

call and output sequence equivalent. �

Denote by call-output-seq-equiv(F,G) the fact that F and G are call-sequence

equivalent.

B Refactoring rules that our rules can handle

It is beneficial to categorize refactoring rules that can be handled by our proof rules.

In general, every change that is local to the function, and does not move code between

different iterations of a loop or recursion, can be handled by the proof rules.

Considering the list of popular refactoring rules in [12] (while ignoring those that

are specific to object-oriented code, or Java):

• Our rules can handle the following rules: Consolidate Duplicate Conditional

Fragments, Introduce Explaining Variable, Reduce Scope of Variable, Remove

Assignments to Parameters, Remove Control Flag, Remove Double Negative,

Replace Assignment with Initialization, Replace Iteration with Recursion, Re-

place Magic Number with Symbolic Constant, Replace Nested Conditional with
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Guard Clauses, Replace Recursion with Iteration, Reverse Conditional, Split

Temporary Variable, Substitute Algorithm.

• If the rules are used in a decision procedure that is able to inline code, they can

also prove the correctness of the following refactoring rules:

Decompose Conditional, Extract Method, Inline Method, Inline Temp, Replace

Parameter with Explicit Methods, Replace Parameter with Method, Replace

Temp with Query, Self Encapsulate Field, Separate Data Access Code.

• Finally, the following refactoring rules cannot be handled by our rules:

Replace Static Variable with Parameter (change in the prototype of the func-

tion), Separate Query from Modifier (splits a function to two functions with

different behaviors), Split Loop (since in our setting, loops are modeled as re-

cursive functions, this transformation turns one recursive function into two).

C Implementation issues

C.1 Converting loops to recursive functions

Algorithms 1 and 2 treat the compared programs as a collection of functions without

loops. We therefore need to replace all loops in the programs by recursive func-

tions. We now present the schema for treating “for” loops. We replace the following

schematic code:

<return-type> <original-function>(...) {

. . .

for( <INIT>; <COND>; <UPDATE>) {

<BODY>

}

. . .

}

with the following code:
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<return-type> <original-function>(...) {

. . .

<INIT>;

<for-loop-recursive-function>(<addresses-of-loop-variables>);

. . .

}

<for-loop-recursive-function>(<pointers-to-loop-variables>)

{

if( !<COND> )

return;

<BODY>

continue_label:

<UPDATE>;

/* the recursive call to the next loop iteration: */

<for-loop-recursive-function>(<pointers-to-loop-variables>);

break_label:

}

In the above schema, 〈INIT〉, 〈COND〉, 〈UPDATE〉 and 〈BODY〉 represent various

code blocks of which the loop is comprised. We cut the loop code (except the 〈INIT〉
part) out of the original function and replace it by a call to the function 〈for-loop-

recursive-function〉 which will implement the iterations of this loop recursively. As the

original loop, this function evaluates 〈COND〉 and proceeds into the loop body only

if it is true. After we execute the body of the loop, we execute the 〈UPDATE〉 block

and call recursively to the function to possibly execute subsequent loop iterations.

We pass the variables used in the loop by address to this function. Therefore we need

to replace each access to a variable in the loop by an access to a dereference of its

respective pointer.
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Note that the 〈BODY〉 code may contain “break” and “continue” statements. We

replace these statements by “goto break label” or “goto continue label” respectively.

These labels are placed in the right places to emulate the behavior of the original

loop on these statements.

The “while” and the “do-while” loops are treated the same way as “for” loops

with the following minor changes. As they contain no 〈INIT〉 or 〈UPDATE〉 code, no

such code appears in the recursive implementation. Also, in the case of “do-while”

loop, the “if( !〈COND〉 ) return;” statement appears after the 〈BODY〉 and before

the “continue label:” instead of being at the beginning of the new function.

Following is a simple loop-to-recursion example. We replace the following code:

struct Str1 {

int key;

long data;

struct Str1 *left, *right;

};

long find(struct Str1* pstr, int key)

{

while( pstr && pstr->key != key ) {

if( pstr->key < key )

pstr = pstr->right;

else pstr = pstr->left;

}

return pstr;

}

with the next one (the definition of “Str1” stays the same):

long find(struct Str1* pstr, int key) {

find_rec_loop0( &pstr, key );

return pstr;
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}

void find_rec_loop0(struct Str1** ppstr, int key)

{

if( !( *ppstr && (*ppstr)->key != key ) )

return;

if( (*ppstr)->key < key )

*ppstr = (*ppstr)->right;

else *ppstr = (*ppstr)->left;

find_rec_loop0( ppstr, key );

}

Note that the whole body of the loop was replaced by the find rec loop0() recursive

function. The “if” statement which guards the entrance to the function contains the

negated loop condition.

Here is a more elaborate example which contains also “continue” and “break”

statements. We replace the following code:

int sum(int *pa, int len) {

int i,s;

for(i = 0, s = 0; i < len; i++) {

if( pa[i] < 0 )

continue;

if( pa[i] == 0 )

break;

s += pa[i];

}

return s;

}

with the following one:
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int sum_rec(int *pa, int len) {

int i,s;

i = 0, s = 0;

sum_rec_loop0(i, &s, len, pa);

return s;

}

void sum_rec_loop0(int i, int *ps,

int len, int *pa)

{

if( !(i < len) )

return;

if( pa[i] < 0 )

goto l_continue;

if( pa[i] == 0 )

goto l_break;

*ps += pa[i];

l_continue:

i++;

sum_rec_loop0(i, ps, len, pa);

l_break:;

}

Both versions of “sum()” return the sum of all positive elements of the array “pa”

till the first 0 element in the array. Note that in the original code the “i” variable

is used only inside the loop. Therefore, it is passed to sum rec loop0() by value. In

contrast, “s” is used outside the loop and therefore is passed to sum rec loop0() by

reference.

Note that in the 〈BODY〉 code, “return” statements and “goto” statements may

appear. These statements may cause the execution to exit the loop. Accordingly,
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when we transform the loop to a separate function, we need a way to perform these

gotos and returns as if they were executed from the original function. For the “return”

statement we add to the original function a placeholder for the returned value and pass

its address to the loop recursive function. Different loop-exit statements may have

various target locations: various gotos labels which are placed outside the loop body,

the program location immediately after the loop, or out of the function which contains

the loop (by a “return” statement). To distinguish between those locations the loop

recursive function returns a ”loop termination code” value which signals to the calling

function what is the target of the exit. A code value of 0 (LTC NORMAL) means a

usual exit of the loop: because 〈COND〉 is false or because of a “break” statement. A

code of LTC RETURN means that the calling function should return with the value

specified by the return value placeholder. Code values 1, 2, 3, etc. result in goto

jumps to the respective labels. Here is an example of such a transformation:

Here is a loop-to-recursion example with “return” and “goto” labels. We replace

the following code:

int sum(int *pa, int len) {

int i,s;

for(i = 0, s = 0; i < len; i++) {

if( pa[i] < 0 )

goto lab_negative_value;

if( pa[i] == 0 )

goto lab_zero_value;

s += pa[i];

if( s > 1000 )

return 1000;

}

return s;

lab_negative_value:

report("Negative value at index:", i);

return -1;
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lab_zero_value:

report("Zero value at index:", i);

return 0;

}

with the next one:

int sum(int *pa, int len) {

int rvretval;

int i,s;

i = 0 , s = 0;

switch(sum_rec_loop0(&i,&s,len,pa,&rvretval))

{

case 1:

goto lab_negative_value;

case 2:

goto lab_zero_value;

case LTC_RETURN:

return rvretval;

case 0:

break;

}

return s;

lab_negative_value:

report("Negative value at index:",i);

return -1;

lab_zero_value:

report("Zero value at index:",i);

return 0;

}

unsigned char sum_rec_loop0(int *pi, int *ps,

int len, int *pa, int *prvretval)

{
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if( !(*pi < len) )

return 0;

if (pa[*pi] < 0)

return 1;

if (pa[*pi] == 0)

return 2;

*ps += pa[*pi];

if (*ps > 1000)

{

*prvretval = 1000;

return LTC_RETURN;

}

(*pi)++;

return sum_rec_loop0(pi,ps,len,pa,prvretval);

return 0;

}

Note that the loop-to-recursion mechanism described here cannot perform goto

jumps into loop bodies. Though the implementation of these jumps is possible in

principal, we did not implement them as they are extremely rare and are considered

a bad programming practice.
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