
A Proof-Producing CSP Solver

Michael Veksler and Ofer Strichman
mveksler@tx.technion.ac.il ofers@ie.technion.ac.il

Information systems Engineering, IE, Technion, Haifa, Israel

Abstract

PCS is a CSP solver that can produce a machine-checkable
deductive proof in case it decides that the input problem is
unsatisfiable. The roots of the proof may be nonclausal con-
straints, whereas the rest of the proof is based on resolution
of signed clauses, ending with the empty clause. PCS uses
parameterized, constraint-specific inference rules in order to
bridge between the nonclausal and the clausal parts of the
proof. The consequent of each such rule is a signed clause
that is 1) logically implied by the nonclausal premise, and
2) strong enough to be the premise of the consecutive proof
steps. The resolution process itself is integrated in the learn-
ing mechanism, and can be seen as a generalization to CSP of
a similar solution that is adopted by competitive SAT solvers.

1 Introduction
Many problems in planning, scheduling, automatic test-
generation, configuration and more, can be naturally mod-
eled as Constraint Satisfaction Problems (CSP) (Dechter
2003), and solved with one of the many publicly available
CSP solvers. The common definition of this problem refers
to a set of variables over finite and discrete domains, and ar-
bitrary constraints over these variables. The goal is to decide
whether there is an assignment to the variables from their re-
spective domains, which satisfies all the constraints. If the
answer is positive the assignment that is emitted by the CSP
solver can be verified easily. On the other hand a negative
answer is harder to verify, since current CSP solvers do not
produce a deductive proof of unsatisfiability.

In contrast, most modern CNF-based SAT solvers accom-
pany an unsatisfiability result with a deductive proof that can
be checked automatically. Specifically, they produce ares-
olution proof, which is a sequence of application of a single
inference rule, namely the binaryresolution rule. In the case
of SAT the proof has uses other than just the ability to inde-
pendently validate an unsatisfiability result. For example,
there is a successful SAT-based model-checking algorithm
which is based on deriving interpolants from the resolution
proof (Henzinger et al. 2004).

Unlike SAT solvers, CSP solvers do not have the lux-
ury of handling clausal constraints. They need to han-
dle constraints such asa < b+ 5, allDifferent(x,y,z), a 6=

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

b, and so on. However, we argue that the effect of a
constraint in a given state can always be replicated with
a signed clause, which can then be part of a resolution
proof. A signed clause is a disjunction betweensigned
literals. A signed literal is a unary constraint, constrain-
ing a variable to a domain of values. For example, the
signed clause(x1 ∈ {1,2}∨ x2 6∈ {3}) constrains1 x1 to be
in the range[1,2] or x2 to be anything but 3. A conjunc-
tion of signed clauses is calledsigned CNF, and the prob-
lem of solving signed CNF is calledsigned SAT2, a prob-
lem which attracted extensive theoretical research and de-
velopment of tools (Liu, Kuehlmann, and Moskewicz 2003;
Beckert, Hähnle, and Manyá 2000b).

In this article we describe how our arc-consistency-based
CSP solver PCS (for a “Proof-producingConstraint Solver”)
produces deductive proofs when the formula is unsatisfiable.
In order to account for propagations by general constraints
it uses constraint-specific parametric inference rules. Each
such rule has a constraint as a premise and a signed clause as
a consequent. These consequents, which are generated dur-
ing conflict analysis, are calledexplanation clauses. These
clauses are logically implied by the premise, but are also
strong enough to imply the same literal that the premise im-
plies at the current state. The emitted proof is a sequence of
inferences of such clauses and application of special resolu-
tion rules that are tailored for signed clauses.

Like in the case of SAT, the signed clauses that are learned
as a result of analyzing conflicts serve as ‘milestone’ atoms
in the proof, although they are not the only ones. They are
generated by a repeated application of the resolution rule.
The intermediate clauses that are generated in this process
are discarded and hence have no effect on the solving pro-
cess itself. In case the learned clause eventually participates
in the proof PCS reconstructs them, by using information
that it saves during the learning process. We will describe
this conflict-analysis mechanism in detail in Section 3 and 4,
and compare it to alternatives such as 1-UIP (Zhang et al.
2001), MVS (Liu, Kuehlmann, and Moskewicz 2003) and
EFC (Katsirelos and Bacchus 2005) in Section 5. We begin,
however, by describing several preliminaries such as CSP

1Alternative notations such as{1,2}:x1 andx{1,2}1 are used in
the literature to denote a signed literalx1 ∈ {1,2}.

2Signed SAT is also called MV-SAT (i.e. Many Valued SAT).

and signed SAT, and by introducing our running example.

2 Preliminaries
2.1 The Constraint Satisfaction Problem (CSP)
A CSP is a tripletφ =

〈

V ,D,C
〉

, whereV = 〈v1, . . . ,vn〉
is the set of problem variables,D = 〈D1, . . . ,Dn〉 is the set
of their respective domains andC is the set of constraints
over these variables. An assignmentα satisfies a CSPφ if it
satisfies all the constraints inC and∀vi ∈ V .α(vi) ∈ Di . A
CSP is unsatisfiable if there is no assignment that satisfies it.

We will use the example below as our running example.

Example 1 Consider three intervals of length 4 starting at
a, b and c. The CSP requires that these intervals do not
overlap and fit a section of length 11. This is clearly unsat-
isfiable as the sum of their lengths is 12. The domains of
a,b and c is defined to be[1,8]. It is clear that in this case
the domains do not impose an additional constraint, since
none of these variables can be assigned a value larger than
8 without violating the upper-bound of 11.

In addition our problem contains three Boolean variables
x1,x2,x3 that are constrained by x1∨x2, x1∨x3, (x2∧x3)→
a = 1. Although the problem is unsatisfiable even without
the constraints over these variables, we add them since the
related constraints will be helpful later on for demonstrating
the learning process and showing a proof of unsatisfiability
that refers only to a subset of the constraints.

We use NoOverlap(a,La,b,Lb) to denote the constraint
a+La≤ b∨b+Lb≤ a. Overall, then, the formal definition
of the CSP is:

V = {a,b,c,x1,x2,x3} ;

D =

{

Da = Db = Dc = [1,8],
Dx1 = Dx2 = Dx3 = {0,1};

C =

{

c1 : NoOverlap(a,4,b,4) c4 : x1∨x2
c2 : NoOverlap(a,4,c,4) c5 : x1∨x3
c3 : NoOverlap(b,4,c,4) c6 : (x2∧x3)→ a= 1 .

2.2 Signed clauses
A signed literalis a unary constraint, which means that it is
a restriction on the domain of a single variable. A positive
signed literal, e.g.,a ∈ {1,2}, indicates an allowed range
of values, whereas a negative one, e.g.,a 6∈ [1,2] indicates
a forbidden range of values. When the domain of values
referred to by a literal is a singleton, we use the equality and
disequality signs instead, e.g.,b= 3 stands forb∈ {3} and
b 6= 3 stands forb 6∈ {3}. A signed clauseis a disjunction of
signed literals. For brevity we will occasionally writeliteral
instead ofsigned literalandclauseinstead ofsigned clause.

Propagation of signed clauses Signed clauses are learned
at run-time and may also appear in the original formulation
of the problem. Our solver PCS has a propagator for signed
clauses, which is naturally based on theunit clause rule. A
clause withn literals such thatn−1 of them are false and
one is unresolved is called a unit clause. The unit clause
rule simply says that the one literal which is unresolved must
be asserted. After asserting this literal other clauses may

become unit, which means that a chain of propagations can
occur.

A clause is ignored if it contains at least one satisfied lit-
eral. If all the literals in a clause are false then propagation
stops and the process ofconflict analysisand learning be-
gins. We will consider this mechanism in Section 3.

Resolution rules for signed clauses PCS uses Beckert et
al.’s generalization of binary resolution to signed clauses in
order to generate resolution-style proofs (Beckert, Hähnle,
and Manyà 2000a). They defined thesigned binary resolu-
tion andsimplificationrules, and implicitly relied on a third
rule which we calljoin literals. In the exposition of these
rules below,X andY consist of a disjunction of zero or more
literals, whereasA andB are sets of values.

signed binary resolution simplification
(v∈ A∨X) (v∈ B∨Y)
(v∈ (A∩B)∨X∨Y)

[Rv]
(v∈ /0∨Z)

(Z)
[Sv]

join literals
((
∨

i v∈ Ai)∨Z)
(v∈ (

⋃
i Ai)∨Z)

[Jv]

Resolution over signed clauses gives different results for
a different selection of the pivot variable. For example:

(a∈ {1,2}∨b∈ {1,2}) (a= 3∨b= 3)
(a∈ /0∨b∈ {1,2}∨b= 3)

[Ra]

(a∈ /0∨b∈ {1,2}∨b= 3)
(b∈ {1,2}∨b= 3)

[Sa]
(b∈ {1,2}∨b= 3)

(b∈ {1,2,3})
[Ja]

gives a different result if the pivot isb instead ofa:

(a∈ {1,2}∨b∈ {1,2}) (a= 3∨b= 3)
(a∈ {1,2,3})

[Rb+Sb+Jb] .

In practice PCS does not list applications of the ‘join-
literals’ and ‘simplification’ rules, simply because they are
applied very frequently and it is possible to check the proof
without them, assuming this knowledge is built into the
proof checker. Such a checker should apply these rules un-
til convergence after each resolution, in order to create the
premise of the next step.

3 Learning
In this section we explain the learning mechanism in PCS,
and how it is used for deriving proofs of unsatisfiability
based, among other things, on the resolution rules that were
defined in the previous section. We begin with implication
graphs, which are standard representation of the propagation
process. In Section 3.2 we will show the conflict analysis al-
gorithm.

3.1 Implication graphs and conflict clauses
A propagation process is commonly described with animpli-
cation graph. Figure 1 shows such a graph for our running
example, beginning from the decisionx1 = 0. In this graph
vertices describe domain updates. For example the vertex

2−UIP

b∈ [1,8]@0
c1

1−UIP

x2 = 1@1
c6

b∈ [5,8]@1
c3x1 = 0@1

c4

c5

a= 1@1

c1

c2

X

x3 = 1@1

c6

c∈ [5,8]@1

c3

c∈ [1,8]@0

c2

Figure 1: An implication graph corresponding to the running
example.

labeled withb ∈ [5,8]@1 means that the domain ofb was
updated to[5,8] at decision level 1. A special case is a ver-
tex labeled with an initial domain, which may only occur
at decision level 0, e.g.,b ∈ [1,8]@0. A conflict between
clauses is signified byX. Directed edges show logical im-
plications, and are annotated with the implying constraint.
The incoming edges of each node are always labeled with
the same constraint.

A constraint is calledconflictingif it is evaluated tofalse
by the current assignment. In our example the constraint
c3 = NoOverlap(b,4,c,4) is conflicting under the assign-
mentx1 = 0. When such a constraint is detected the solver
has to analyze the conflict and infer its cause. Traditionally
this process has two roles: to apply learning by producing a
new constraint and to select a decision level that the solver
should backtrack to. The learned constraint has to be logi-
cally implied by the formula, and to forbid, as a minimum,
the assignment that caused the conflict. In practice the goal
is to produce a more general constraint, such that a larger
portion of the search space is pruned. In competitive SAT
solvers and CSP solvers such as EFC, the constraint is built
such that it necessarily leads to further propagation rightaf-
ter backtracking (this constraint is called anasserting clause
in SAT).

A standard technique for performing conflict analysis in
SAT, which can also be used in CSP is called 1-UIP (for
‘first Unique Implication Point’) (Zhang et al. 2001). The
dashed line marked as 1-UIP in Figure 1 marks a cut in the
graph that separates the conflict node from the decision and
assignments in previous decision levels. There is only one
vertex immediately to the left of the line — namely the node
labeled witha= 1@1 — which is both on the current deci-
sion level and has edges crossing this line to the right-hand
side. Nodes with this property are called UIPs. UIPs, in
graph-theory terms, aredominatorsof the conflicting node
with respect to the decision. In other words, all paths from
the decision to the conflicting node must go through each
UIP. A UIP is called 1-UIP if it is the rightmost UIP. 2-UIP
marks the second UIP from the right, etc.

Asserting all the literals immediately on the left of a cut
necessarily leads to a conflict. For example, collecting the
literals on the left of the 1-UIP cut in Figure 1 shows that
(a= 1∧b∈ [1,8]∧c∈ [1,8]) imply a conflict. To avoid the
conflict the solver can generate aconflict clausethat forbids
this combination, namely(a 6= 1∨b 6∈ [1,8] ∨ c 6∈ [1,8]) in
this case. PCS produces stronger clauses than those that can

Constraint Explanation clause
c1 NoOverlap(a,4,b,4)ω1 = (a 6∈ [1,4]∨b 6∈ [1,4])
c2 NoOverlap(a,4,c,4) ω2 = (a 6∈ [1,4]∨c 6∈ [1,4])
c3 NoOverlap(b,4,c,4) ω3 = (b 6∈ [5,8]∨c 6∈ [5,8])
c4 x1∨x2 ω4 = (x1 6= 0∨x2 6= 0)
c5 x1∨x3 ω5 = (x1 6= 0∨x3 6= 0)
c6 (x2∧x3)→ a= 1 ω6 = (x2 6= 1∨x3 6= 1∨a= 1)

Table 1: Constraints and explanation clauses for the running
example. The explanation clauses refer to the inferences de-
picted in the implication graph in Figure 1.

be inferred by 1-UIP, by using resolution combined with a
simplification step. This is the subject of the next subsection.

3.2 Conflict analysis and learning
Algorithm 1 describes the conflict analysis function in
PCS, which is inspired by the corresponding function in
SAT (Zhang and Malik 2003). This algorithm traverses the
implication graph from right to left, following backwards the
propagation order.

We will use the following notation in the description
of the algorithm. For a nodeu, let lit (u) denote the lit-
eral associated withu. For a literal l , let var(l) denote
the variable corresponding tol . For a set of nodesU , let
vars(U) = {var(lit (u)) | u ∈ U}, and for a clause3 cl, let
vars(cl) = {var(l) | l ∈ cl}.

A key notion in the algorithm is that of anexplanation
clause:

Definition 1 (Explanation clause) Let u be a node in the
implication graph such that lit(u) = l. Let (l1, l) . . . (ln, l)
be the incoming edges of u, all of which are labeled with a
constraint r. A signed clause c is anexplanation clauseof a
node u if it satisfies:

1. r→ c,
2. (l1∧·· ·∧ ln∧c)→ l.

We can see from the definition that an explanation clause is
strong enough to make the same propagation of the target lit-
eral given the same input literals. Note that if the constraint
r happens to be a clause, then the notions of explanation
clause andantecedent clausethat is used in SAT, coincide.

Example 2 Explanation clauses for our running example
appear in the third column in Table 1. These clauses are
built with respect to the nodes in the implication graph in
Figure 1. We will explain how they are generated in Sec-
tion 3.3.

The algorithm begins by computingcl, an explanation
clause for the conflicting nodeconflict-node. In line 3 it
computes the predecessor nodes ofconflict-nodeand stores
them in pred. The function RELVANT (〈nodes〉, 〈clause〉)
that is invoked in line 4 returns a subsetN of the nodes
in 〈nodes〉 that are relevant for the clause〈clause〉, i.e.,
vars(N) = vars(〈clause〉).

3Here we use the standard convention by which a clause can
also be seen as a set of literals.

Let dl be the latest decision level infront. The loop begin-
ning in line 5 is guarded by STOP-CRITERION-MET(front),
which is true in one of the following two cases:

• There is a single node in leveldl in front, or

• dl = 0, and none of the nodes infront has an incoming
edge.

At each iteration of the loop, CSP-ANALYZE -CONFLICT
updatescl which, in the end of this process, will become
the conflict clause. The setfront maintains the following in-
variant just before line 6:The clause cl is inconsistent with
the labels infront. Specifically, in each iteration of the loop,
CSP-ANALYZE -CONFLICT:

• assigns the latest node infront in the propagation order to
curr-node, and removes it fromfront,

• finds an explanationexplclause tocurr-node,

• resolve the previous clausecl with expl, where
var(lit (curr-node)) is the resolution variable (the resolu-
tion process in line 9 is as was explained in Section 2.2),
and

• adds the predecessors ofcurr-nodeto front and removes
redundant nodes as explained below.

The input to the function DISTINCT is a set of nodes
〈nodes〉. It outputs a maximal subsetN of those such that no
two nodes are labeled with the same variable. More specif-
ically, for each variablev ∈ vars(〈nodes〉), let U(v) be the
maximal subset of nodes in〈nodes〉 that are labeled withv,
i.e., for eachu∈U(v) it holds thatvar(lit (u)) = v. ThenN
contains only the right-most node on the implication graph
that is inU(v).

The invariance above and other properties of Algorithm 1
are proved in (Veksler and Strichman 2010).

Algorithm 1 Conflict analysis
1: function CSP-ANALYZE -CONFLICT
2: cl:= EXPLAIN (conflict-node);
3: pred:= PREDECESSORS(conflict-node);
4: front:= RELVANT (pred, cl);
5: while (¬STOP-CRITERION-MET(front)) do
6: curr-node:= LAST-NODE(front);
7: front:= front\curr-node;
8: expl:= EXPLAIN (curr-node);
9: cl:= RESOLVE(cl, expl, var(lit (curr-node)));

10: pred:= PREDECESSORS(curr-node);
11: front:= DISTINCT (RELVANT (front∪ pred, cl));
12: add-clause-to-database(cl);
13: return clause-asserting-level(cl);

Example 3 Table 2 demonstrates a run of Algorithm 1 on
our running example. Observe that it computes the conflict
clause by resolvingω3 with ω2, and the result of this reso-
lution with ω1. The intermediate result, namely the result of
the first of these resolutions, is discarded. The resulting con-
flict clause(a 6∈ [1,4]∨b 6∈ [1,8]∨c 6∈ [1,8]) is stronger than
what the clause would be had we used the 1-UIP method,
namely(a 6= 1∨b 6∈ [1,8] ∨c 6∈ [1,8]).

Line Operation
2 cl := (b 6∈ [5,8]∨c 6∈ [5,8]) (= ω3)
3 pred := {b∈ [5,8]@1,c∈ [5,8]@1}
4 front := {b∈ [5,8]@1,c∈ [5,8]@1}
6 curr-node:= c∈ [5,8]@1
7 front := {b∈ [5,8]@1}
8 expl := (a 6∈ [1,4]∨c 6∈ [1,4]) (= ω2)
9 cl := (a 6∈ [1,4]∨b 6∈ [5,8]∨c 6∈ [1,8])
10 pred := {a= 1@1,c∈ [1,8]@0}
11 front := {a= 1@1,b∈ [5,8]@1,c∈ [1,8]@0}
6 curr-node:= b∈ [5,8]@1
7 front := {a= 1@1,c∈ [1,8]@0}
8 expl := (a 6∈ [1,4]∨b 6∈ [1,4]) (= ω1)
9 cl := (a 6∈ [1,4]∨b 6∈ [1,8]∨c 6∈ [1,8])
10 pred := {a= 1@1,b∈ [1,8]@0}
11 front := {a= 1@1,b∈ [1,8]@0,c∈ [1,8]@0}
12 add((a 6∈ [1,4]∨b 6∈ [1,8]∨c 6∈ [1,8]))
13 return 0

Table 2: A trace of Algorithm 1 on the running example.
The horizontal lines separate iterations.

Saving proof data The resolution steps are saved in a list
s1, . . . ,sn, in case they will be needed for the proof. Each
stepsi can be defined by a clauseci and a resolution vari-
ablevi . The first steps1 has an undefined resolution vari-
able. The sequence of resolutions is well-defined by this
list: the first clause isc1, and thei-th resolution step for
i ∈ [2,n] is the resolution ofci with the clause computed
in step i − 1, usingvi as the resolution variable. In prac-
tice PCS refrains from saving explanation clauses owing to
space considerations, and instead it infers them again when
printing the proof. It represents each proof step with a tu-
ple 〈Constraint,Rule,Pivot〉, whereConstraint is a pointer
to a constraint in the constraints database,Ruleis the param-
eterized inference rule by which an explanation clause can
be inferred (ifConstrainthappens to be a clause thenRule
is simply NULL), andPivot is a pointer to the resolution
variable. The EXPLAIN function saves this information.

3.3 Inferring explanation clauses

We now describe how explanation clauses are generated
with the EXPLAIN function.

Every constraint has a propagator, which is an algorithm
that deduces new facts. Every such propagator can also be
written formally as an inference rule, possibly parameter-
ized. For example, the propagator for a constraint of the
form a≤ b when used for inferring a new domain fora, is
implemented by computing{x | x∈D(a)∧x≤max(D(b))},
i.e., by finding the maximal value in the domain ofb, and
removing values larger than this maximum fromD(a). The
same deduction can be made by instantiating the inference
rule LE(m) below withm= max(D(b)).

a≤ b
(a∈ (−∞,m]∨b∈ [m+1,∞))

(LE(m)) .

If, for example, the current state isa∈ [1,10] andb∈ [2,6],
then the propagator will infera ∈ [1,6]. The consequent
of LE(6) implies the same literal at the current state, which
means that it is an explanation clause. Table 3 contains sev-
eral such inference rules that we implemented in PCS. In
a proof supplement of this article (Veksler and Strichman
2010) we provide a soundness proof for these rules, and also
prove that such an inference rule exists for any constraint.

One way to infer the explanation clauses, then, is to record
the inference rule, and its parameter if relevant, by which
the literal is inferred during propagation (when progressing
to the right on the implication graph). An alternative solu-
tion, which is implemented in PCS, is to derive the inference
rules only during conflict analysis, namely when traversing
the implication graph from right to left. The reason that this
is more efficient is that propagation by instantiation of in-
ference rules is typically more time consuming than direct
implementation of the propagator. Hence performance is
improved by finding these ruleslazily, i.e, only when they
participate in the learning process and are therefor poten-
tially needed for the proof.

4 Deriving a proof of unsatisfiability
If the formula is unsatisfiable, PCS builds a proof of unsat-
isfiability, beginning from the empty clause and going back-
wards recursively. The proof itself is printed in the correct
order, i.e., from roots to the empty clause.

Recall that with each conflict clause, PCS saves the series
of proof stepss1, . . . ,sk that led to it, each of which is a tu-
ple〈Constraint,Rule,Pivot〉. We denote bysi .Cons, si .Rule,
andsi .Pivot these three elements ofsi , respectively.

Algorithm 2 receives a conflict clause as an argument —
initially the empty clause — and prints its proof. It be-
gins by traversing the proof stepss1, . . . ,sk of the conflict-
clause. Each such step leads to a recursive call if it corre-
sponds to a conflict-clause that its proof was not yet printed.
Next, it checks whether the constraint of each proof step is
a clause; if it is not, then it computes its explanation with
APPLYRULE. This function returns the explanation clause
corresponding to the constraint, based on the rulesi .Rule.
After obtaining a clause, in lines 15–17 it resolves it withcl,
the clause from the previous iteration, and prints this reso-
lution step. Note that the clauses resolved in line 16 can be
intermediate clauses that were not made into conflict clauses
by the conflict analysis process.

Hence, Algorithm 2 prints a signed resolution proof,
while adding an inference rule that relates each non-clausal
constraint to a clausal consequent, namely the explanation
clause.

Example 4 First, we need an inference rule for NoOverlap:

NoOverlap(a, la,b, lb)
(a 6∈ [m,n+ lb−1]∨b 6∈ [n,m+ la−1])

(NO(m,n)) ,

where m,n are values such that1− lb≤ n−m≤ la−1.

Algorithm 2 Printing the proof
1: function PRINTPROOF(conflict-clause)
2: Printed← Printed∪conflict-clause
3: (s1, . . . ,sk)←PROOFSTEPS(conflict-clause)
4: for i← 1,k do
5: if si .C is a clause andsi .C 6∈ Printed then
6: PRINTPROOF(si .C)
7: for i← 1,k do
8: if si .C is a clausethen expl← si .C
9: else

10: expl← APPLYRULE(si .C,si .Rule)
11: Print(“Rule:”, si .Rule)
12: Print(“Premise:”,si .C, “Consequent:”,expl)
13: if i = 1 then cl← expl
14: else
15: Print(“Resolve”,cl,expl, “on”, si .Pivot)
16: cl←Resolve(cl,expl,si .Pivot)
17: Print(“Consequent:”,cl))

1. NoOverlap(b,4,c,4) premise
2. (b 6∈ [5,8]∨c 6∈ [5,8]) 1[NO(5,5)]
3. NoOverlap(a,4,c,4) premise
4. (a 6∈ [1,4]∨c 6∈ [1,4]) 3[NO(1,1)]
5. (a 6∈ [1,4]∨b 6∈ [5,8]∨c 6∈ [1,8]) 2,4[Resolve(c)]
6. NoOverlap(a,4,b,4) premise
7. (a 6∈ [1,4]∨b 6∈ [1,4]) 6[NO(1,1)]
8. (a 6∈ [1,4]∨b 6∈ [1,8]∨c 6∈ [1,8]) 5,7[Resolve(b)]
9. (a 6∈ [5,8]∨c 6∈ [5,8]) 3[NO(5,5)]
10. (a 6∈ [1,8]∨b 6∈ [1,8]∨c 6∈ [1,8]) 8,9[Resolve(a)]
11. (c∈ [1,8]) premise
12. (a 6∈ [1,8]∨b 6∈ [1,8]) 10,11[Resolve(c)]
13. (b∈ [1,8]) premise
14. (a 6∈ [1,8]) 12,13[Resolve(b)]
15. (a∈ [1,8]) premise
16. () 14,15[Resolve(a)]

Table 4: A deductive proof of the unsatisfiability of the CSP.

Table 4 shows a proof of unsatisfiability of this CSP. This
presentation is a beautification of the output of Algorithm 2.
Note that the length of the proof does not change if in-
terval sizes increase or decrease. For example, a,b,c ∈
[1,80] and NoOverlap(a,40,b,40), NoOverlap(a,40,c,40),
NoOverlap(b,40,c,40), will require the same number of
steps. Also note that the proof does not refer to the vari-
ables x1,x2 and x3, since PCS found anunsatisfiable core
which does not refer to constraints over these variables.

5 Alternative learning mechanisms
While our focus is on extracting proofs, it is also worth while
to compare CSP-ANALYZE -CONFLICT to alternatives in
terms of the conflict clause that it generates, as it affects both
the size of the proof and the performance of the solver.

An alternative to CSP-ANALYZE -CONFLICT, recall, is
collecting the literals of the 1-UIP. In Example 3 we saw
that 1-UIP results in the weaker conflict clause(a 6= 1∨b 6∈
[1,8]∨c 6∈ [1,8]). After learning this clause the solver back-

Constraint Parameters Inf. rule

All-diff (v1, . . . ,vk) Domain D, and a setV ⊆
{v1, . . . ,vk} such that 1+
|D|= |V|

All-diff (v1, . . . ,vk)

(
∨

v∈V v 6∈ D)
(AD(D,V))

a 6= b Valuem
a 6= b

(a 6= m∨b 6= m)
(NE(m))

a= b DomainD
a= b

(a 6∈ D∨b∈ D)
(EQ(D))

a≤ b+ c Valuesm,n
a≤ b+ c

(a∈ (−∞,m+n]∨b∈ [m+1,∞)∨c∈ [n+1,∞))
(LE+(m,n))

a= b+ c Valueslb,ub, lc,uc
a= b+ c

(a∈ [lb+ lc,ub+uc]∨b 6∈ [lb,ub]∨c 6∈ [lc,uc])
(EQa

+(lb,ub, lc,uc))

Table 3: Inference rules for some popular constraints, which PCS uses for generating explanation clauses. The last ruleis a
bound consistencypropagation targeted ata.

tracks to decision level 0, in which the last two literals are
false. At this point the first literal is implied, which removes
the value 1 fromD(a), giving D′(a) = [2,8]. In contrast,
Algorithm 1 produces the clause(a 6∈ [1,4]∨b 6∈ [1,8]∨c 6∈
[1,8]) (see line 12 in Table 2). This clause also causes a
backtrack to level 0, and the first literal is implied. But this
time the range of values[1,4] is removed fromD(a), giving
the smaller domainD′′(a) = [5,8]. This example demon-
strates the benefit of resolution-based conflict analysis over
1-UIP, and is consistent with the observation made in (Liu,
Kuehlmann, and Moskewicz 2003).

Another alternative is the MVS algorithm, which was de-
scribed in (Liu, Kuehlmann, and Moskewicz 2003) in terms
of traversing the assignment stack rather than the implication
graph. MVS essentially produces the same conflict clause
as Algorithm 1, but it assumes that the input formula con-
sists of signed clauses only, and hence does not need ex-
planation clauses. We find Algorithm 1 clearer than MVS
as its description is much shorter and relies on the implica-
tion graph rather than on the assignment stack. Further, it
facilitates adoption of well-known SAT techniques and rel-
atively easy development of further optimizations. In (Vek-
sler and Strichman 2010) we present several such optimiza-
tions that allow CSP-ANALYZE -CONFLICT to trim more ir-
relevant graph nodes and learn stronger clauses.

A third alternative is the generalized-nogoods algorithm
of EFC (Katsirelos and Bacchus 2005). There are two main
differences between the learning mechanisms:

• EFC generates a separate explanation of each removed
value. PCS generates an explanation for each propaga-
tion, and hence can removesetsof values. This affects
not only performance: PCS’s conflict analysis algorithm,
unlike EFC’s, will work in some cases with infinite do-
mains, e.g., intervals over real numbers.

• EFC generates an explanation eagerly, after each con-
straint propagation. In contrast PCS generates an explana-
tion only in response to a conflict, and hence only for con-
straints that are relevant for generating the conflict clause.

Performance PCS performs reasonably well in compar-
ison with state of the art solvers. In the CSC09 compe-

tition (Dongen, Lecoutre, and Roussel 2009), in then-ary
constraints categories, an early version of PCS achieved the
following results, out of 14 solvers. In the ‘extension’ sub-
category: 6-th in UNSAT, 9-th in SAT, 9-th in total. In the
‘intension’ subcategory: 1-st in UNSAT, 4-th in SAT, 4-th in
total. We intend to publish separately detailed experimental
results together with a description of the various optimiza-
tions in PCS.

References
Beckert, B.; Hähnle, R.; and Manyà, F. 2000a. The 2-sat
problem of regular signed cnf formulas. InISMVL, 331–
336.
Beckert, B.; Hähnle, R.; and Manyá, F. 2000b. The sat
problem of signed cnf formulas. 59–80.
Dechter, R. 2003.Constraint Processing. Morgan Kauf-
mann.
Dongen, M. V.; Lecoutre, C.; and Rous-
sel, O. 2009. Fourth international CSP
solver competition. Available on the web at
http://www.cril.univ-artois.fr/CPAI09/.
Henzinger, T. A.; Jhala, R.; Majumdar, R.; and McMillan,
K. L. 2004. Abstractions from proofs. InPOPL, 232–244.
Katsirelos, G., and Bacchus, F. 2005. Generalized nogoods
in CSPs. In Veloso, M. M., and Kambhampati, S., eds.,
AAAI, 390–396. AAAI Press / The MIT Press.
Liu, C.; Kuehlmann, A.; and Moskewicz, M. W. 2003.
Cama: A multi-valued satisfiability solver. InICCAD,
326–333. IEEE Computer Society / ACM.
Veksler, M., and Strichman, O. 2010. A proof-producing
CSP solver (a proof supplement). Technical Report IE/IS-
2010-02, Industrial Engineering, Technion, Haifa, Israel.
Zhang, L., and Malik, S. 2003. Validating SAT solvers
using an independent resolution-based checker: Practical
implementations and other applications. InDATE, 10880–
10885.
Zhang, L.; Madigan, C. F.; Moskewicz, M. W.; and Ma-
lik, S. 2001. Efficient conflict driven learning in boolean
satisfiability solver. InICCAD, 279–285.

