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Abstract

A mediator is a reliable entity which plays on behalf of the players
who give her the right of play. The mediator is guaranteed to behave
in a pre-specified way based on messages received from the agents.
However, a mediator cannot enforce behavior; that is, agents can play
in the game directly without the mediator’s help. A mediator gener-
ates a new game for the players, the mediated game. The outcome in
the original game of an equilibrium in the mediated game is called a
mediated equilibrium. Monderer and Tennenholtz introduced a the-
ory of mediators for games with complete information. We extend the
theory of mediators to games with incomplete information, and use
the new theory to study position auctions, a central topic in practical
and theoretical electronic commerce. We provide a minimal set of con-
ditions on position auctions, which is sufficient to guarantee that the
VCG outcome function is a mediated equilibrium in these auctions.

∗An early version of this paper appears in the proceedings of the ACM conference
on Electronic Commerce 2007 (EC’07). The current version significantly extends the
conference version by introducing a general model of mediators in games with incomplete
information, presenting all proofs, and includes further discussion and exposition.
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1 Introduction

In a game with incomplete information with private values every player holds
some private information, which is called the player’s type, and has a set of
possible actions. Every profile of the players’actions generates an outcome in
a given set of possible outcomes. The utility of a player depends on the vector
of types and on the outcome generated by the profile of actions. A strategy
of a player is a function that maps each of its possible types to an action.
The game is called a Bayesian game, when a commonly known probability
measure on the profiles of types is commonly known to the participants.
Otherwise, it is called a pre-Bayesian game. In this paper we deal only with
pre-Bayesian games. The leading solution concept for pre-Bayesian games is
the ex post equilibrium: A profile of strategies, one for each player, such that
no player has a unilateral profitable deviation, independent of the types of
the other players. Consider the following simple example of a pre-Bayesian
game, which possesses an ex post equilibrium. The game is denoted by H,
and the set of outcomes in this game is identified with the set of profiles of
actions.

a b
a 5, 2 3, 0
b 0, 0 4, 2

A

a b
a 2, 2 0, 0
b 3, 3 5, 2

B

In H there are two players. Both players can choose among two actions:
a and b. The column player, player 2, has a private type, A or B. The
row player, player 1, has only one possible type. A strategy of player 1
is g1,where g1 = a or g1 = b. A strategy of player 2 is a function g2 :
{A,B} → {a, b}.That is, player 2 has 4 possible strategies. In this game
the strategy profile (g1, g2) is an ex post equilibrium, where g1 = b and
g2(A) = b, g2(B) = a.

Unfortunately, pre-Bayesian games do not, in general, possess ex post
equilibria, even if we allow mixed strategies. In order to address this problem
and to enable the players to reach a desired outcome of a given game as an
ex post equilibrium we suggest in this paper the use of mediators.

A mediator is a reliable entity that can interact with the players and
perform on their behalf actions in a given game. However, a mediator cannot
enforce behavior. Indeed, an agent is free to participate in the game without
the help of the mediator. The mediator’s behavior on behalf of the agents
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that give it the right of play is pre-specified, and is conditioned on information
the agents provide to the mediator. This notion is natural; in many systems
there is some form of reliable party or administrator that can be used as
a mediator. Brokers and routers are simple examples of such mediators.
Notice that we assume that the game is given, and all the mediator can do
is to perform actions on behalf of the agents that explicitly allow it to do
so.1 A weaker form of a mediator discussed in the game theory literature
is captured by the notion of correlated equilibrium [4]. This notion was
generalized to communication equilibrium in [9, 22]. An additional type of
mediator is discussed in [19]. However, in all these settings the mediator can
not perform actions on behalf of the agents that allow it to do so. Another
type of mediators is captured by the notion of conditional contracts. In a
conditional contract, a joint strategy for the group of all players is suggested,
and is executed only if all players agree to accept this suggestion. However,
the idea that a mediation device will play also on behalf of a strict subset
of the players, who give it the right of play, has not been considered in that
literature.

In this paper, a mediator will specify the actions to be performed on behalf
of the set of players who give it the right of play, as a function of the identity
of the players in that set, and the information provided by these players.
Such mediators that can obtain the ”right of play” but cannot enforce the
use of their services have been defined and discussed for general n-person
games with complete information in [21].2 In this paper we introduce the use
of such mediators in games with incomplete information.

In order to illustrate the power of mediators for games with incomplete
information consider the following pre-Bayesian game G that does not possess
an ex post equilibrium. In G, the column player has two possible types: A
and B.

1 This natural setting is different from the one discussed in the classical theories of
implementation and mechanism design, where a designer designs a new game from scratch
in order to yield some desired behavior.

2 For games with complete information the main interest is in leading agents to be-
haviors which are stable against deviations by coalitions. A special case of mediators was
already discussed in [14], where the authors discussed mediators for a two-person game,
which is known to the players but not to the mediators, and they looked for Nash equilib-
rium in the new game generated by the mediator. The topic of mediators for games with
complete information has been further generalized and analyzed in [24].
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a b
a 5, 2 3, 0
b 0, 0 2, 2

A

a b
a 2, 2 0, 0
b 3, 0 5, 2

B

A mediator for G should specify the actions it will choose on behalf of the
players that give it the right of play. If player 2 wants to give the mediator the
right of play it should also report a type. Consider the following mediator:

If both players give the mediator the right of play, the mediator will play
on their behalf (a, a) if player 2 reports A, and (b, b) if player 2 reports B. If
only player 1 gives the mediator the right of play, the mediator will choose
a on his behalf. If only player 2 gives the mediator the right of play, the
mediator will choose action a (resp. b) on his behalf, if B (resp. A) has been
reported.

The mediator generates a new pre-Bayesian game,which is called the me-
diated game. In the mediated game player 1 has three actions: Give the
mediator the right of play, denoted by m, or play directly a or b. Player 2
has four actions: m−A, m−B,a,b, where m−A (m−B) means reporting
A (B) to the mediator and giving it the right of play. The mediated game is
described in the following figure:

m−A m−B a b
m 5, 2 2, 2 5, 2 3, 0
a 3, 0 5, 2 5, 2 3, 0
b 2, 2 0, 0 0, 0 2, 2

A

m−A m−B a b
m 2, 2 5, 2 2, 2 0, 0
a 0, 0 2, 2 2, 2 0, 0
b 5, 2 3, 0 3, 0 5, 2

B

It is easy to verify that giving the mediator the right of play, and reporting
truthfully, is an ex post equilibrium at the mediated game. That is, (f1, f2)
is an ex post equilibrium, where f1 = m, and f2(A) = m−A, f2(B) = m−B.
In this case we say that the mediator implements the outcome function ϕm :
{A,B} → O defined by ϕm(A) = (a, a) and ϕm(B) = (b, b), where O is the
set of outcomes of G.
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The aim of this paper is twofold. We introduce mediators for games with
incomplete information, and apply them in the context of position auctions.3

Our choice of position auctions as the domain of application is not a co-
incidence; indeed, position auctions have become a central issue in advertise-
ment and sponsored search, and the selection of appropriate position auctions
for that task is a subject of considerable amount of study [18, 8, 15, 6, 7, 26].
There exist many types of 3rd parties (i.e. neither advertisers, nor the com-
panies running the auctions) which do the bidding on behalf of advertisers
in position auctions.4 The typical role of such a 3rd party is to decide on the
exact keywords for which a bid will be made and on these bids’ values. As
thousands of position auctions are being held by the leading search engines
and many advertisers seek the support of such 3rd parties, the market of 3rd
parties for bidding in position auctions is flowering. The type of 3rd parties
discussed in this paper allows for coordination of advertisers’ bids in position
auctions. Such coordination is known in economics, for example in the con-
text of the so-called bidding rings.5 The mediators discussed in this paper
are 3rd parties with specific characteristics, allowing for such bid coordina-
tion. The goal of a mediator is to maximize its own profit. This goal is not
explicitly modeled in this paper. However, it is implicitly assumed that maxi-
mizing the mediator’s profit is highly correlated with the goal of guaranteeing
high utility to rational agents. We assume rational agents follow equilibrium
behavior, and require the equilibrium to be an ex-post equilibrium; that is,
an equilibrium in which each agent best strategy does not depend on the
distribution of other agents’ valuations. Such equilibrium behavior also pro-
vides stability, as it does not require the agents to make a trial and error
procedure, learning the other agents’ valuations, which might deteriorate the
agents’ payoffs. Given a position auction, the mediator should induce an
ex-post equilibrium, in which the agents get high utility. By the revelation
principle, it is sufficient to consider only mediators such that in an ex-post
equilibrium agents use the mediator’s service and report their true valuations
to it. Notice that given a position auction, a mediator with such desired prop-
erties induces another (new) position auction. As it is shown in [2], the VCG

3Mediators for Bayesian one-item auctions (in particular first price and second price
auctions) have been already discussed in [10, 17, 5]. However, the mediators in these
papers are endowed with the additional strong characteristic – the ability to re-distribute
payoffs.

4E.g., http://www.salsainternet.com.au and http://www.topclickmedia.co.uk/sevices.htm.
5See the references mentioned in Footnote 3.
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position auction is the only anonymous position auction that possesses an ex
post equilibrium. Therefore, we deal in this paper with implementation of
the outcome of the VCG position auction by truthful mediation. The VCG
outcome is considered to lead to relatively high utilities for the agents. For
example, in [26], Varian considers the next-price position auction6, which is
currently used in practice, and a natural subset of its equilibria under com-
plete information. He shows that the utility of each player is maximized in
the equilibrium which yields the VCG utilities. 7

One such mediator has already been discussed, for other purposes, in
the literature: An English auction type of algorithm was constructed in [7]
that takes as input the valuations of the players and outputs bids for the
next-price position auction. It was proved there that reporting the true
type to this algorithm by each player forms an ex post equilibrium, which
generates the VCG outcome. In our language this algorithm can ”almost” be
considered as a mediator for the next-price position auction that implements
the VCG outcome function; What is missing, is a component that ”punishes”
players who send their bids directly to the auctioneer, and a proof that using
the mediator services and reporting the true type by each player is an ex
post equilibrium in the mediated game defined by the algorithm and by the
additional component. Notice that, in principle, a mediator may generate
a desired outcome function by punishing the players who do not use its
services using very high bids by the players that use its services. However,
we believe that such mediators are not realistic, and therefore we concentrate
on the search for individually rational mediators that implement the VCG
outcome function and satisfy an additional rationality condition: the payoff
of an agent who gives the mediator the right of play and reports his type
truthfully cannot be negative regardless of the actions taken by the agents
who did not choose the mediator’s services, or agents who report false types
to the mediator.

We first prove the existence of such desired mediators for next-price posi-
tion auctions. Next, we provide a minimal characterization for the existence
of individually rational mediators that implement the VCG outcome function
in position auctions; We provide three conditions on position auctions that
imply the existence of such an individually rational mediator for any given

6In [7] next-price position auctions are called generalized second price (GSP) auctions.
7Notice that since maximizing agent utilities is opposite to revenue maximization by

the auctioneer, we do not expect the auctioneer to provide such 3rd party services.
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position auction satisfying these conditions. We also show that the set of
those three conditions is minimal. Using this result, we prove the existence
of such individually rational mediators for a rich class of position auctions,
including all k-price position auctions, k > 1. For k=1, the self-price po-
sition auction, we show an impossibility result. However, in auctions with
the first arrival rule, in which ties are impossible, we prove the existence of
individually rational mediators that implement the VCG outcome function.

In Section 2 we present the general theory of mediators for pre-Bayesian
games. In Sections 3-7 we apply mediators to position auctions. It Section 8
we generalize the results on position auctions to results on position auctions
with quality factors, in which the auction organizer can express preferences
over players. In such auctions we deal with the implementation of the out-
come function of an appropriate weighted VCG position auction.

2 Mediators in pre-Bayesian Games

In this section we present a general theory of mediators in pre-Bayesian
games. In a pre-Bayesian game, G, there is a fixed set of players N =
{1, 2, · · · , n}, each of the players is endowed with a set of actions bi ∈ Bi.
There is a set of outcomes O, and a function ψ : B → O that maps action
profiles to outcomes, where B = B1 × · · · × Bn. There is a set of states
ω ∈ Ω. The payoff of player i, wi(ω, a) depends on the realized state ω ∈ Ω,
and on the outcome a ∈ O. However, the realized state is not known to the
players. Every player i receives a state-correlated type, vi = ṽi(ω) ∈ Vi on
which he conditions his action. Let V = V1× · · · ×Vn. In this paper we deal
with private value auctions. Therefore, as is common for such auctions, we
assume that Ω = V. Hence, for every v = (v1, . . . , vn) ∈ V, ṽi(v) = vi.

Let G = (N,V,O, (wi)i∈N ,B, ψ) be a pre-Bayesian game. We define the
utility function of i, ui : V ×B → R as follows:

ui(v,b) = wi(v, ψ(b)).

A strategy of player i in G is a function fi that assigns an action, bi = fi(vi) ∈
Bi to every possible type vi ∈ Vi. A profile of strategies f = (f1, · · · , fn) is
an ex post equilibrium in G if for every player i, and for every v ∈ V

ui(v, f(v)) ≥ ui(v, bi, f−i(v−i)), ∀bi ∈ Bi,
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where, f(v) = (f1(v1), . . . , fn(vn)), and f−i(v−i) is the vector f(v) without
the i’s component.8 fi is a dominant strategy for i if the above inequalities
hold for every profile f−i of the other players’ strategies.

In mechanism design theory, there is a given environment, E = (N, T,O, (wi)i∈N)
that contains all components of a pre-Bayesian game except for the rules of
the game; that is, the environment does not contain the action sets and the
mapping from actions to outcomes. In addition, the mechanism designer has
an outcome function ϕ : V → O, which she wishes to implement. Hence, the
goal of the designer is to find rules, (B, ψ) and an ex post equilibrium f in
the pre-Bayesian game G = (E,B, ψ) that implements ϕ in the sense that

ψ(f(v)) = ϕ(v), v ∈ V.

In contrast, in this paper we consider situations in which the pre-Bayesian
game is given, and cannot be changed. It is well-known that ex post equi-
librium need not exist even in very simple pre-Bayesian games. This makes
the choice of a strategy for a participant very difficult. To deal with the
non-existence problem, and/or to increase players’ utility when a particular
ex post equilibrium is not desirable, and/or to guarantee economic efficiency,
we suggest the use of mediators. A mediator is a reliable party that acts in
a pre-specified way in behalf of the players who give her the right to do so.
All other players can independently play or use other mediators.

Mediators for games with complete information have been defined and
analyzed in [21]. In games with complete information the only input the
mediator collects is the ”right of play”.9 Hence, her action depends on the
set of players that give her the right of play. Therefore, a mediator for a
game with complete information is defined by a vector b = (bS)S⊆N , where

8It is well-known that an ex post equilibrium in a pre-Bayesian game is a Bayesian
equilibrium for every choice of prior probability and vice versa. Indeed, the classical
literature in economics/game theory actually discussed ex post equilibrium in a particular
Bayesian game, and defined it as a Bayesian equilibrium which is robust to changes in the
prior probability. Only recently the concept of pre-Bayesian games have been explicitly
defined and analyzed. See e.g.,[12, 11], where pre-Bayesian games are called games in
informational form and games without probabilistic information,[13], where they are called
games with incomplete information with strict type uncertainty, [1], where they are called
distribution-free games with incomplete information, and [3] where they are called pre-
Bayesian games.

9What we call here a mediator for games with complete information is called a minimal
mediator in [21]. It is proved in [21] that a minimal mediator can implement every outcome
which can be implemented by a mediator.
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bS = (bi)i∈S ∈ BS is the vector of actions used by the mediator if S is the
set of players that give her the right of play.10

In a pre-Bayesian game G, the mediator can use the information provided
by the agents. Hence, a player is required not only to give the mediator the
right of play but also to report his type.

Definition 1 (Mediators) Let G = (E,B, ψ) be a pre-Bayesian game,
where E = (N,V,O,w) is the environment. A mediator for the pre-Bayesian
game is a vector m = (m

S
)S⊆N , where mS : VS → BS.

If the set of players that give the mediator the right of play is S, and the
members of S send the mediator the profile of types vS = (vi)i∈S ∈ VS, the
mediator plays mS(vS) ∈ BS on behalf of the players in S.

Every mediator m for the pre-Bayesian game G = (E,B, ψ) defines a
new pre-Bayesian game, Gm = (E,Bm, ψm), which is called the mediated
game. This game shares the same environment E with the original game.
The set of actions of i is Bm

i = Bi ∪ Vi, where without loss of generality
we assume that Bi ∩ Vi = ∅. Choosing bmi = bi ∈ Bi means that i is not
using the mediator’s services. Choosing bmi = vi ∈ Vi means reporting the
value vi to the mediator, as well as the permission to play on behalf of i.
Let bm ∈ Bm . Denote by N(bm) the set of players that use the mediator;
N(bm) = {i ∈ N |bmi ∈ Vi}. The action-to-outcome function in the mediated
game, ψm : Bm → O, is defined as follows:

ψm(bm) = ψ(mN(bm)(b
m
N(bm)),b

m
−N(bm)),

where −N(bm) = N \N(bm). The utility function of i in the mediated game
Gm is denoted by um

i .

Definition 2 (Mediated equilibrium) Let G be a pre-Bayesian game, and
let ϕ : V → O be an outcome function. We say that ϕ is a mediated equi-
librium in G if there exists a mediator for G, m, and an ex post equilibrium
g = (g1, · · · , gn) in Gm such that gi(vi) ∈ Vi for every i ∈ N and for every
vi ∈ Vi, and the following holds:

ϕ(v) = ψ(mN(g(v))), v ∈ V.

10In general, bS can be a correlated strategy.
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The strategy of i at the mediated game in which he gives the right of play to
the mediator and reports his true type is called the T−strategy. The strategy
profile in which every player uses the T−strategy is called the T−strategy
profile. We denote by ϕm : V → O the outcome function generated by the
mediator, when every player is using the T− strategy. That is,

ϕm(v) = ψ(mN(v)), v ∈ V.

When the T− strategy profile is an ex post equilibrium in Gm we say that m
implements ϕm by truthful mediation. The well known revelation principle11

applies to our setting:

Observation 1 (Revelation principle) Let G be a pre-Bayesian game,
and Let ϕ : V → O be an outcome function. ϕ is a mediated equilibrium if
and only if there exists a mediator m that implements ϕ by truthful media-
tion. 12

3 Position Auctions

In a position auction there is a seller who sells a finite number of positions
j ∈ K = {1, ...,m}. There is a finite number of (potential) bidders i ∈ N =
{1, ..., n}. We assume that there are more bidders than positions, i.e. n > m.
The positions are sold for a fixed period of time. For each position j there
is a commonly-known number αj > 0, which is interpreted as the expected
number of visitors at that position. For every j ∈ K αj is called the click-
through rate of position j. We assume that α1 > α2 > · · · > αm > 0. If i
holds a position then every visitor to this position gives i a revenue of vi > 0,
where vi is called the valuation of i. The set of possible valuations of i is
Vi = (0,∞).

We assume that the players’ payoff functions are quasi-linear. That is,
if player i is assigned to position j and pays pj per click then his payoff is
αj(vi − pj).

Every player is required to submit a bid, bi ∈ Bi = [0,∞). We assume
that bidding 0 is a symbol for non-participation. Therefore, a player with a
bid 0 is not assigned to any position, and pays 0.

11See e.g. [16] (page 871).
12The revelation principle can be generalized as in mechanism design for mediators that

enable players to report any message and not just a type.
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In all position auctions we consider, the player with the highest positive
bid receives the first position, the player with the second highest positive
bid receives the second position, and so on. Ties will be considered later.
It is useful to define for every position auction two dummy positions m + 1
and −1, which more than one player may be ”assigned” to. All players, who
participate in the auction but do not get a position in K are assigned to
position m+ 1 and all players who choose not to participate are assigned to
position −1. We also define αm+1 = α−1 = 0.

An assignment of players to positions is called an allocation. Hence, an
allocation is a vector s = (s1, s2, · · · , sn) with si ∈ K ∪ {−1,m + 1} such
that if si ∈ K then si 6= sl for every l 6= i; si is the position of player i. The
set of all allocations is denoted by A. Given the above, a position auction
is defined by its tie breaking rule, which determines the allocation in case of
ties, and by its payment scheme. These are discussed below.

3.1 Tie breaking rules

In practice, the most commonly used tie breaking rule is the First-Arrival
rule: if a set of players submit the same bid, their priority in receiving the
positions is determined by the times their bids were recorded; An earlier bid
receives a higher priority. In auction theory this tie breaking rule is typically
modelled by assuming that the auctioneer is using a random priority rule.
More specifically, let Γ be the set of all permutations, γ = (γ1, ..., γn) of
N = {1, · · · , n}. Every such γ defines a priority rule as follows: Player i
has a higher priority than k if and only if γi < γk. Every vector of bids
b and a permutation γ uniquely determine an allocation. An auctioneer
who is using the random priority rule chooses a fixed priority rule γ by
randomizing uniformly over Γ. However, the resulting priority rule is not
told to the players before they make their bids. When the priority rule γ is
told to the players before they make their bids, the tie breaking rule is called
a fixed priority rule. Dealing with a fixed priority rule simplifies notations
and proofs, and in most cases, and in particular in this paper, results that
are obtained with this tie breaking rule are identical to the results obtained
with the random priority rule. Therefore, unless otherwise specified, we will
assume this tie breaking rule.

Without loss of generality we assume that the fixed priority rule is defined
by the natural order, γ̃ = (1, 2, ..., n). That is, bidder i has a higher priority
than bidder k if and only if i < k. Given this fixed priority rule we can make
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the following definitions, which apply to all position auctions:
We denote by s(b, i) the position player i is assigned to when the bid

profile is b. The allocation determined by b is denoted by

s(b) = (s(b, 1), s(b, 2), · · · , s(b, n)).

For every j ∈ K ∪ {−1,m + 1} we denote by δ(b, j) the set of players
assigned to position j. Note that for j ∈ K, δ(b, j) contains at most one
player. In case δ(b, j) is a singleton for j ∈ K, we will also let it be the
player (and not the set with this player) that is assigned to position j.

3.2 The payment schemes

Let B = B1 × B2 × · · · × Bn be the set of bid profiles. Each position
j ∈ K ∪ {−1,m + 1} is associated with a payment function, pj : B → R+,
where pj(b) is the payment per click for position j when the bid profile is b.
Naturally we assume that p−1 is identically zero. However, we also assume
that pm+1 is identically zero. Hence, a participant who is not assigned a real
position pays nothing.

We call the vector of payment functions p = (pj)j∈K the position payment
scheme.

We deal with anonymous position payment schemes, i.e. the players’
payments to the auctioneer are not influenced by their identities. This is
modeled as follows: Let b ∈ B be a bid profile. We denote by b(j) the jth

highest bid in b. For j > n we let b(j) = 0. For example if b = (3, 7, 3, 0, 2)
then b(1) = 7, b(2) = 3, b(3) = 3, b(4) = 2, b(5) = 0. We let b∗ = (b(1), · · · , b(n)).
Anonymity is modeled by the requirement that for every two bid profiles
b,d ∈ B, p(b) = p(d) whenever b∗ = d∗. That is, for every position j there
exists a real-valued function p̃j defined over all ordered vectors of bids such
that for every b ∈ B pj(b) = p̃j(b

∗).
We further assume that a player never pays more than his bid. That is,

pj(b) ≤ b(j) for every b ∈ B and for every j ∈ K.
It is convenient in certain cases to describe the payment functions indexed

by the players. Let G be a position auction with a position payment scheme
p.

For every player i we denote

qi(b) = ps(b,i)(b),
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and
q(b) = (q1(b), q2(b), · · · qn(b)).

Note that the correspondence p→ q is one-to-one. We call q the player pay-
ment scheme. All our assumptions about the position payment schemes can
be transformed to analogous assumptions about the player payment schemes.
We will describe position auctions by their position payment schemes, p, but
we will freely use the associated player payment scheme, q in the definitions
and proofs.

3.3 Central position auctions

We next describe the payment schemes of three central position auctions.
Self-price position auctions: Each player who is assigned to a position
with a positive click-through rate pays his own bid. That is, for every j ∈ K
and every b ∈ B

pj(b) = b(j) (1)

Next-price position auctions: In this auction (run with a slight variation
by Google), every player who is assigned to a position with a positive click-
through rate pays the bid of the player assigned to the position right after
him if there is such a player, and zero otherwise. That is, for every j ∈ K
and for every b ∈ B

pj(b) = b(j+1) (2)

VCG position auctions: In a Vickrey-Clarke-Groves (VCG) position auc-
tion the payment function for position j ∈ K is defined as follows.13 For
every b ∈ B

pvcg
j (b) =

∑m+1
k=j+1 b(k)(αk−1 − αk)

αj

(3)

Note that the VCG position auction is not the next-price position auction
unless there is only one position.

13 We use the standard payment function of the VCG mechanism. A general VCG
mechanism may be obtained from the standard one by adding an additional payment
function to each player, which depends only on the types of the other players. Some
authors (see e.g., [11]) call the standard VCG mechanism, the VC mechanism. According
to this terminology we actually deal with VC position auctions. However, we decided to
use the more common terminology.
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3.4 Position auctions as pre-Bayesian games

We denote by G = G(α,p) the position auction with the click-through rate
vector α and the position payment scheme p. We denote by q the associated
player payment scheme.

G is a pre-Bayesian game as defined in Section 2: N = {1, · · · , n} is
the set of players. Vi = (0,∞) is the set of types of i, and V = V1 ×
V2 × · · · × Vn is the set of states. Bi = [0,∞) is the set of actions of i,
and B = B1 × B2 × · · · × Bn is the set of action profiles. O = A × Rn

+ is
the set of outcomes, where A is the set of allocations; A typical outcome is
(s1, · · · , sn, c1, · · · , cn), where si is the slot of i, and ci is the cost per click
paid by i. Position auctions are not as general as the pre-Bayesian games
defined in Section 2: The payoff function of i depends only on vi and not on
the vector of types v = (v1, · · · , vn). Hence, wi : Vi ×O → R is defined as
follows:

wi(vi, (s, c)) = wi(vi, (s1, · · · , sn, c1, · · · , cn)) = αsi
(vi − ci).

The function that maps profiles of actions to outcomes, ψ : B → O is

ψ(b) = (s(b),q(b)).

The utility function for player i, ui : Vi × B → R is therefore defined as
follows:

ui(vi,b) = αs(b,i)(vi − qi(b)).

3.5 Mediators for position auctions

We next recall the definitions from Section 2, and apply them to the context
of position auctions. Let G be a position auction. A mediator for G is a
vector of functions m = (mS)S⊆N , where mS : VS → BS. The mediator m
generates the pre-Bayesian mediated game Gm. In this game every player i
receives his type vi and can either send a type, v̂i (not necessarily the true
type) to the mediator, or submit a bid directly to the auction. If S is the
set of players that send a type to the mediator, the mediator bids on their
behalf mS(v̂S). Hence, the action set of player i in the mediated game is
Bi ∪ Vi, where in this case Vi is a copy (0,∞) which is disjoint from Bi.

14

14A player either chooses a bid, when participating directly in the auction, or a type,
when using the mediator services.
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Recall that the T-strategy for a player in the mediated game is the strategy,
in which the player uses the mediator’s services and reports to her his true
type. The T-strategy profile is the profile of strategies in which every player
is using the T-strategy.

The T-strategy profile is an ex post equilibrium in the mediated game
if for every player i and type vi, and for every vector of types of the other
players, v−i. the following two conditions hold:
E1: i is not better off when he gives the mediator the right of play and report
a false type. That is, for every v̂i ∈ Vi

ui(vi,mN(vi,v−i)) ≥ ui(vi,mN(v̂i,v−i)).

E2: i is not better off when he bids directly. That is, for every bi ∈ Bi,

ui(vi,mN(vi,v−i)) ≥ ui(vi, bi,mN\{i}(v−i)).

Whenever the T-strategy profile is an ex post equilibrium in Gm, the
mediator m implements an outcome function in G. This outcome function is
denoted by ϕm : V → O, and it is defined as follows:

ϕm(v) = ψ(mN(v)) = (s(mN(v)),q(mN(v))).

3.6 Implementing the VCG Outcome Function by Truth-
ful Mediation

As is discussed in the introduction, in this paper we deal with implemen-
tation of the outcome of the VCG position auction by truthful mediation.
In this section we demonstrate this type of implementation by an example.
This example also shows the need for a definition of individually rational
mediators.

Given a position auction G our goal is to construct a mediator that would
implement the outcome function of the VCG position auction. This outcome
function, ϕvcg : V → O is defined as follows:

ϕvcg(v) = (s(v), qvcg(v)).

Definition 3 Let G be a position auction . Let m be a mediator for G. We
say the m implements the VCG outcome function in G, or that it implements
ϕvcg in G if the T-strategy profile is an ex post equilibrium in Gm, and ϕm =
ϕvcg.
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We demonstrate implementing the VCG outcome function by a simple
example:

Example 1 Consider a self-price position auction G = G(α,p) with 2 play-
ers and one position, and with α1 = 1. That is, G is a standard two-person
first-price auction. The corresponding VCG position auction is a standard
second-price auction. We define a family of mediators mc, c ≥ 1, each of
them implements the VCG position auction. Assume both players use the
mediator’s services and send it the types v̂ = (v̂1, v̂2), then the c−mediator
acts as follows: If v̂1 ≥ v̂2 the mediator makes the following bids on behalf
of the players: b1 = v̂2, and b2 = v̂2

2
. If v̂2 > v̂1, the mediator makes the bids

b1 = v̂1

2
, b2 = v̂1. If only one player uses the mediator services, say player

i, then the mediator bids bi = cv̂i on behalf of i. We claim that for every
c ≥ 1, the T-strategy profile is an ex post equilibrium in the mediated game
generated by mc.

Indeed, assume player 2 uses the T-strategy and reports his type v2 to
the mediator, and consider player 1.

If v1 ≥ v2 then by using the T-strategy player 1 receives the position
and pays v2. Hence, 1’s utility is v1 − v2. If player 1 deviates by using the
mediator’s services and reporting v̂1 ≥ v2 his utility is still v1 − v2. If he
reports v̂1 < v2 his utility will be 0. If player 1 does not use the mediator, he
should bid at least cv2 in order to get the position, and therefore his utility
cannot exceed v1 − v2.

If v1 < v2, then the T-strategy yields 0, and any other strategy yields a
non-positive utility.

Hence, the T−strategy profile is an ex post equilibrium for every c−
mediator, c ≥ 1.15�

While each of the mediators mc, c ≥ 1, in Example 1 implements the VCG
outcome function, the mediator with c = 1 has a distinct characteristic: a
player who uses the T-strategy cannot get a negative utility. In contrast, for
every c > 1, if say player 2 does not use the mediator services, participates
directly and bids less than cv1, then the T-strategy yields a negative utility

15However, note that the T-strategy is not a dominant strategy; e.g., for c > 1, if v1 > v2

and player 2 bids directly v2 (without using the mediator services), then by bidding directly
v1+v2

2 is better for player 1, than using the T-strategy: in the former case player 1’s utility
is v1−v2

2 and in the latter case her utility is non-positive. A similar argument shows that
the T−strategy is not dominant for c = 1 as well.
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of (1− c)v1 to player 1. This motivates our definition of individually rational
mediators:

Definition 4 (Individually rational mediator) Let G be a position auc-
tion. A mediator, m for G is individually rational, if for every player, using
the T-strategy guarantees a non-negative level of utility. That is, for every
S ⊆ N and every player i ∈ S

ui(vi,mS(vS),b−S) ≥ 0, ∀b−S ∈ B−S and ∀vs ∈ VS.

Hence, in Example 1 the mediator mc, with c = 1, is a individually
rational mediator that implements the VCG outcome function.16

4 Mediators in Next-Price Position Auctions

We now show that there exists an individually rational mediator, which im-
plements the VCG outcome function in next-price position auctions. Al-
though in the following section we prove a more general result, we present
this result first, given the importance of next-price position auctions in the
literature and in practice.

Theorem 2 Let G be a next-price position auction. There exists an indi-
vidually rational mediator that implements ϕvcg in G.

In order to prove Theorem 2 and other theorems we need the following lemma:

Lemma 3 Let pvcg be the VCG payment scheme.

1. pvcg
j (b) ≤ b(j+1) for every j ∈ K.

2. pvcg
j (b) ≥ pvcg

j+1(b) for every j = 1, ...,m−1 and for every b ∈ B, where
for every j, equality holds if and only if b(j+1) = b(j+2) = · · · = b(m+1).

The proof of Lemma 3 (which part of it can also be deduced from a recursive
definition of the VCG payments given in [26] and [7]) is given in Section 8.

In the proof of Theorem 2 we will show that the following mediator im-
plements ϕvcg in a next-price position auction:17

16It is interesting to note that this simple example cannot be extended to general (more
than one slot) self-price position auctions, as will be discussed in Section 6.

17For the case in which all players choose the mediator, the mediator is similar to the
algorithm given in [7].
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Mediator 1 (A mediator for next-price position auctions)

(a) For every v ∈ V let mN(v) = b(v), where b(v) is defined as follows:

• bi(v) = pvcg
s(v,i)−1(v) for every player i such that 2 ≤ s(v, i) ≤ m.18

• bi(v)(v) = pvcg
m (v), where i(v) is the player with the lowest index

in δ(v,m+ 1).

• bi(v) =
bi(v)(v)

1+ρi
for every i ∈ δ(v,m+1)\{i(v)}. and some positive

ρi’s.

• bδ(v,1)(v) = ε+ pvcg
1 (v) for some ε > 0.19

(b) For every strict subset S ⊂ N mS(v) = vS for every vS ∈ VS.

We now provide some intuition for the reason that Mediator 1 implements
the VCG outcome function. Suppose there are no ties. 20 If player i is
suppose to be assigned to position K \{1}, then Mediator 1 bids on behalf of
i the VCG payment of the player with the highest valuation which is smaller
than player i’s valuation. For the player with the highest value Mediator
1 assigns the highest bid, and for all players which are not supposed to be
assigned to any position j ∈ K in the VCG position auction (except one
player) Mediator 1 assigns low enough bids. By the first part of Lemma
1 the allocation will be as in the VCG position auction. Therefore, given
the next-price position payment functions, the payments are as in the VCG
position auction. Furthermore, assigning valuations as bids when only a
subset of the players use Mediator 1, ensures that any unilateral deviation
in which an agent plays directly in the auction is not beneficial. This follows
from the second part of Lemma 3. Notice that such a mediator is individually
rational.
Proof of Theorem 2:
Let m be Mediator 1 defined above. We show that ϕm(v) = ϕvcg(v) for
every v ∈ V . Let v ∈ V be an arbitrary valuation vector.

We have to show that s(b(v)) = s(v) and that q(b(v)) = qvcg(v).
We begin by showing that s(b(v)) = s(v). It is sufficient to show that

whenever 1 ≤ s(v, i) < s(v, l) ≤ m + 1 for some i 6= l, then s(b(v), i) <
s(b(v), l).

18Recall that s(b, i) denotes the position of player i under the bid profile b.
19Recall that whenever δ(b, j) is a singleton for j ∈ K, δ(b, j) also denotes the player

(and not the set of players) assigned to position j.
20We deal with ties in the definition and the proof.
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We first show it for s(v, i) = 1, that is δ(v, 1) = i. Since bδ(v,1)(v) > bj(v)
for every j 6= i, s(b(v), i) = 1. Therefore s(b(v), i) < s(b(v), l). Suppose
that s(v, l) = m + 1 and l 6= i(v). By the second part of Lemma 3 and by
the definition of b(v), bl(v) < bi(v). Therefore s(b(v), i) < s(b(v), l). If
s(v, i) > 1, and l ≤ m or l = i(v), we distinguish between two cases:

1. vi = vl. Since s(v, i) < s(v, l), the fixed priority rule implies that i < l.
By the second part of Lemma 3, pvcg

s(v,i)−1(v) ≥ pvcg
s(v,l)−1(v). Therefore

bi(v) ≥ bl(v), which yields s(b(v), i) < s(b(v), l).

2. vi > vl. Let j + 1 = s(v, i). That is, v(j+1) = vi, and therefore by
the second part of Lemma 3, pvcg

s(v,i)−1(v) > pvcg
s(v,i)(v). Since s(v, i) ≤

s(v, l) − 1, by the second part of Lemma 3, pvcg
s(v,i)(v) ≥ pvcg

s(v,l)−1(v).

Therefore pvcg
s(v,i)−1(v) > pvcg

s(v,l)−1(v), which yields bi(v) > bl(v). There-

fore s(b(v), i) < s(b(v), l).

This completes the proof that s(b(v)) = s(v) for all v ∈ V .
Observe that for every player i such that s(b(v), i) ∈ K

ps(b(v),i)(b(v)) = pvcg
s(v,i)(v).

Therefore qi(b(v)) = qvcg
i (v) for every i ∈ N . This shows that q(b(v)) =

qvcg(v) for all v ∈ V . Hence, ϕm = ϕvcg.
We proceed to prove that the T-strategy is an ex post equilibrium. Note

that by the truthfulness of VCG, it is not beneficial for any player i to miss
report her value to the mediator, given that all other players use the T-
strategy. Next we show that it is not beneficial for a single player i ∈ N
to participate in the auction directly, given that all other players use the
T-strategy. Fix some v ∈ V . Assume that player i is the only player that
participates directly in the auction. Hence, v−i is the vector of bids submitted
by the mediator. Let bi be player i’s bid. Let k = s(v, i). Therefore, since
ϕm = ϕvcg, s(b(v), i) = k. Let j be player i’s position in the deviation.
Hence j = s((v−i, bi), i). If j /∈ K then player i’s utility is zero and therefore
deviating is not worthwhile for i. Suppose j ∈ K. Let b̃ = (v−i, bi). Then

αk(vi − pk(b(v))) = αk(vi − pvcg
k (v)) ≥

αj(vi − pvcg
j (b̃)) ≥ αj(vi − b̃(j+1)),

where the first equality follows from ϕm = ϕvcg, the first inequality follows
since VCG is truthful, and the second inequality follows from the first part of
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Lemma 3. Since pj is position j’s payment function in the next-price position
auction, αj(vi − b̃(j+1)) = αj(vi − pj(b̃)). Therefore

αk(vi − pk(b(v))) ≥ αj(vi − pj(b̃)).

Hence, player i does not gain from participating directly in the auction.
Finally we show that m is individually rational. If all players choose the

mediator then by the first part of Lemma 3 each player which uses the T-
strategy will not pay more than his value. Consider the situation in which a
subset of players, S, participate directly in the auction. Since the mediator
submits the reported values on behalf of the other players, these other players
will not pay more than their reported values. Hence a player which used the
T-strategy will not pay more than his value. �

Remark: As shown in the proof part (b) is important for showing both
that the Mediator 1 implements the VCG outcome function and that Medi-
ator 1 is individually rational.

5 Implementing the VCG Outcome Function

in General Position Auctions

In the previous section we discussed the implementation of the VCG outcome
function in the next price position auction. In this section we provide a much
larger class of position auctions in which it is possible to implement ϕvcg by
individually rational mediators. We are about to give sufficient conditions for
implementing ϕvcg by an individually rational mediator in position auctions.
We need the following definitions:

Definition 5 (GLP position auctions) A position auction, G is a gener-
alized lower price (GLP) position auction if the payment of each player who
has been assigned a position in K, is a function of the bids of players assigned
to ”lower” positions than his own. Formally, for every j ∈ K and for every
couple of bid profiles b1,b2 ∈ B such that b1(l) = b2(l) for every l > j,

pj(b
1) = pj(b

2).
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Definition 6 (V CG cover) A position auction G is a V CG cover if for
every v ∈ V there exists b ∈ B such that ψG(b) = ϕvcg(v), where ψG(b) =
(s(b), q(b)).

Definition 7 (Monotone position auctions) A position auction G is mono-
tone if pj(b) ≥ pj(b

′) for every j ∈ K and for every b ≥ b′, where b ≥ b′ if
and only if bi ≥ b′i for every i ∈ N .

We are now able to show:

Theorem 4 Let G be a position auction.

(i) If the following conditions hold then there exists an individually rational
mediator that implements ϕvcg in G:

1. G is a GLP position auction.

2. G is a V CG cover.

3. G is monotone.

(ii) The set of Conditions 1-3 is minimal. That is, if any one of the condi-
tions 1-3 is dropped, there exists a position auction, which satisfies the
other two conditions, but ϕvcg cannot be implemented by an individually
rational mediator.

The proof of part (ii) is given below. The proof of part (i) is given in
Section 8. However, the following remarks about part (i) are important:
Remarks:

1. Theorem 4 applies in particular to next-price position auctions dis-
cussed in Section 4. However, it applies to many other interesting
position auctions as will be shown later. Moreover, the mediator con-
structed for this general case is different from Mediator 1 used in the
proof of Theorem 2.

2. The monotonicity condition is only used when proving that Mediator
2 is individually rational.

3. In this paper we assume that the allocation rule ranks players in po-
sitions in decreasing order of their bids. We actually prove a stronger
result than stated in Theorem 4:all we need from the allocation rule of
the position auction G in Theorem 4 is that if a single player changes
her bid the relative order between the other players remain.
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We now prove part (ii) of Theorem 4.
Proof of Part (ii) of Theorem 4:

It is easy to see that if G is not a V CG cover, then implementing ϕvcg by
truthful mediation is impossible. We prove the necessity of conditions 1 and
3 by Examples 2 and 3 respectively.

Example 2 (Condition 1 is necessary) Let G = G(α,p) be the follow-
ing position auction. Let N = {1, 2, 3}, K = {1, 2} and α = (2, 1). Let

p1(b) =
b(1)
4

and p2(b) = b(2). It is immediate to see that the monotonicity
condition is satisfied. We next show that G is a V CG cover. Let v ∈ V be
an arbitrary valuation vector. We need to find a bid profile b(v) such that

ψG(b(v)) = ϕvcg(v). Note that pvcg
1 (v) =

v(2)+v(3)

2
and pvcg

2 (v) = v(3). We
define the bid profile b(v) as follows.

Let bδ(v,3)(v) =
v(3)

2
, bδ(v,2)(v) = v(3) and bδ(v,1)(v) = 2v(2) + 2v(3).

By the construction of b(v), s(b(v), i) = s(v, i) for i = 1, 2, 3 . In
addition observe that pj(b(v)) = pvcg

j (v) for j = 1, 2. Therefore ψG(b(v)) =
ϕvcg(v). Since v is arbitrary, G is a V CG cover. Obviously G is not a
GLP position auction. Suppose in negation that there exists an individually
rational mediator m, which implements the VCG outcome function in G.
Consider the following vector of valuations v = (12, 10, 8). If all players use
the mediator, then player 2 (with valuation 10) gets position 2, pays 8, and
therefore her utility is 1(10− 8) = 2. Player 2 can always bid more than the
other players, and by that cause some other player to be positioned second;
therefore, since the mediator is required to be individually rational it must
be that the mediator submits not more than 12 on behalf of both players 1
and 3. But then player 2 can bid 13, and win the first position; therefore,
if both players, 1 and 3, use the T-strategy, by bidding 13 player 2’s utility
will be 2(10 − 13

4
) > 8. This contradicts that m is an individually rational

mediator that implements the VCG outcome function in G.�

Example 3 (Condition 3 is necessary) Let G = G(α,p) be the follow-
ing position auction. Let n = 4, m = 3, α = (100, 10, 1), p1(b) = b(2) − b(3)

and p2(b) =
b(3)+b(4)

2
, and p3(b) = b(4). Notice that G is not monotone.

Observe that G is a GLP position auction.
We next show that G is a VCG cover. Let v ∈ V be an arbitrary valuation

vector. We need to find a bid profile b(v) such that ψG(b(v)) = ϕvcg(v).

Note that pvcg
1 (v) =

90v(2)+9v(3)+v(4)

100
, pvcg

2 (v) =
9v(3)+v(4)

10
and pvcg

3 (v) = v(4).
We define the bid profile b(v) recursively:
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Let bδ(v,4)(v) = pvcg
3 (v), bδ(v,3)(v) = 2pvcg

2 (v) − bδ(v,4)(v), bδ(v,2)(v) =
bδ(v,3) + pvcg

1 (v) and bδ(v,1)(v) = bδ(v,2)(v) + 1.
By Lemma 3 and by the construction of b(v), s(b(v), i) = s(v, i) for

i = 1, ..., 4 . In addition observe that pj(b(v)) = pvcg
j (v) for j = 1, 2, 3.

Therefore ψG(b(v)) = ϕvcg(v). Since v is arbitrary, G is a V CG cover.
Suppose in negation that there exists an individually rational mediator

m, that implements the VCG outcome function in G. Consider the following
vector of valuations v = (14, 12, 14, 1). Suppose players 1,3 and 4 use the
T-strategy. We will show that player 2 is better off participating directly
in the auction, which will contradict that m implements the VCG outcome
function in G. If player 2 (with valuation 12) uses the T-strategy, then she is
assigned to position 3 and pays 1, and therefore her utility is 1(12− 1) = 11.
Suppose player 2 is the only player that participates directly in the auction.
Let bi, i = 1, 2, 3, 4 be the bids submitted to the auction (bi for i = 1, 3, 4 are
the bids submitted by the mediator). If bi = 0 for some i ∈ {1, 3, 4}, then
by bidding b2 = 0.5, player 2 gains at least position 3, pays at most 0.5, and
therefore strictly improves his utility; this contradicts that m implements
ϕvcg. Suppose bi > 0 for every i ∈ {1, 3, 4}. We distinguish between the
following cases, while in each case the idea is to derive constraints about the
possible bids an individually rational mediator can submit on behalf of at
least one of the players that use the T -strategy, and show that under these
constraints player 2 has a beneficial deviation:

1. b1 ≥ b3 ≥ b4. We first show that in order for m to be individually
rational it must be the case that b4 ≤ 1. If b4 > 1, then by bidding
b2 = b4+1

2
, q4(b) > 1, which contradicts that m is individually rational.

If b4 < 1, then by letting b2 = b4, q2(b) < 1 and since s(b, 2) ∈ K,
player 2’s utility is at least 1(12 − q2(b)) > 11. Suppose b4 = 1. If
b2 < b4 then q1(b) = b3−b4. Therefore since m is individually rational,
b3 − b4 ≤ 14. Hence, b3 ≤ 15. Let b2 = b3. Therefore, by the priority
rule γ̃, s(b, 2) = 2; hence, q2(b) ≤ 15+1

2
. Therefore player 2’s utility is

at least 10(12− 8) > 11.

2. b1 ≥ b4 > b3. In order for m to be individually rational it must be
the case that b3 ≤ 1. If b3 > 1, then by letting b2 = 1 we have that
q4(b) = b3+b2

2
> 1, which contradicts that m is individually rational.

If b2 < b3 then q1(b) = b4 − b3. Therefore, since m is individually
rational, b4 − b3 ≤ 14. Hence, b4 ≤ 15. Let b2 = b4. Therefore, by the
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priority rule γ̃, s(b, 2) = 2; hence, q2(b) ≤ 15+1
2

. Therefore player 2’s
utility is at least 10(12− 8) > 11.

3. b4 > b1 ≥ b3. In order for m to be individually rational it must be
the case that b3 ≤ 1. If b3 > 1, then by letting b2 > b4, s(b, 4) = 2;
therefore q4(b) = b1+b3

2
> 1, which contradicts that m is individually

rational. Suppose b2 < b3. Therefore q4(b) = b1 − b3. Hence, since m
is individually rational, b1 ≤ 2. Let b2 = 3. Therefore, by the priority
rule γ̃, s(b, 2) ∈ {1, 2}; since q2(b) ≤ 3, player 2’s utility is at least
10(12− 3) > 11.

4. b3 > b1 ≥ b4. From the arguments of the first case and the symmetry
of players 1 and 3 we obtain that b1 ≤ 15 and b4 ≤ 1. Let b2 = b3+b1

2
.

Hence s(b, 2) = 2; therefore q2(b) ≤ 15+1
2

= 8. Hence, player 2’s utility
is at least 10(12− 8) > 12.

The cases b3 ≥ b4 > b1 and b4 > b3 ≥ b1 are similar to cases 2 and 3
respectively. We obtained that player 2 benefits from participating directly
in the auction, which contradicts that m is an individually rational mediator
which implements ϕvcg in G.�

This completes the proof of part 2 of Theorem 4.�
To summarize, we have given a minimal set of conditions, which is suffi-

cient for transforming a large class of position auctions to the V CG position
auction by truthful mediation.

Conditions 1 and 3 in Theorem 4 are easy to verify. However verify-
ing condition 2 is more challenging. In Theorem 5 we derive two sufficient
conditions for a GLP position auction to be a VCG cover. We need a few
notations.

Let Z = {(z1, ..., zn) : z1 ≥ z2 ≥ · · · ≥ zn ≥ 0} be the set of all ordered
vector of bid profiles. Let pj be a position payment function for some j ∈
K ∪ {m+ 1}. Recall that p̃j is the real valued function over Z such that for
every bid profile b pj(b) = p̃j(b

∗). Let

T (j) = {k ∈ N |∀z ∈ Z p̃j(z) = p̃j(ẑk, z−k) ∀ẑk such that (ẑk, z−k) ∈ Z},

and let D(j) = N \ T (j). In addition let D(m+ 1) = φ.
D(j) can be interpreted as the set of coordinates for which p̃j is a function

of. For example, in the next-price auction D(j) = {j + 1}, and in the VCG
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position auction D(j) = {j+1, j+2, ...,m+1}. For any finite set of integers
S ⊆ {1, ..., n} let l(S) and h(S) denote the smallest and largest integer in S
respectively. For S = φ we define l(S) = h(S) = n + 1. The proof of the
following is given in Section 8.

Theorem 5 Let G = G(α,p) be a GLP position auction. If the following
conditions holds then G is a V CG cover.

1. For every z ∈ Z, for every j ∈ K, and for every c ∈ [p̃j+1(z),∞) there
exists z′ ∈ Z, in which z′k = zk for every k ≥ l(D(j + 1)), such that
p̃j(z

′) = c.

2. For every j ∈ K p̃j(·) is continuous and strictly increasing in every
coordinate k such that k ∈ D(j) \ ∪m

t=j+1D(t).

In the following examples we apply Theorems 4 and 5 to interesting classes
of position auctions, Generalized next-price position auctions21, and Weighted
next-price position auctions. In addition, note that it follows immediately
from Theorem 5 that the position auction in Example 3 is a VCG cover.

Definition 8 (Generalized next-price position auctions) A position auc-
tion G(α,p) is called a generalized next-price position auction if the payment
scheme p is of the following form. For every j ∈ K and for every b ∈ B
pj(b) = b(l(j)), where l(j) is an integer such that l(j) > j.22

We show:

Theorem 6 Let G be a generalized next-price position auction. There exists
an individually rational mediator that implements ϕvcg in G if and only if
the following two conditions hold:

(i) l(j + 1) > l(j) for j = 1, ...,m− 1.
(ii) l(m) ≤ n.23

Proof. Let G = G(α,p) be a generalized next-price position auction.
We first show that if conditions (i) or (ii) are not satisfied then G is not

21Generalized next-price position auctions are not used today in practice but are rec-
ommended to sellers under certain circumstances [20, 25]

22Recall that b(j) = 0 for every j > n.
23The requirement that l(m) ≤ n, is that the payment will depend on some player’s bid,

and not be identically zero.
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a VCG cover, and therefore the only if part immediately holds. Suppose
that (ii) is not satisfied, i.e. l(m) > n. Let v ∈ V . By (3) we have that
pvcg

m (v) = v(m+1) > 0. However pm(b) = 0 for every b ∈ B since l(m) > n.
Therefore, G is not a V CG cover. Suppose that only (i) is satisfied. That
is l(m) ≤ n but l(j + 1) ≤ l(j) for some j ∈ {1, ...,m − 1}. Let v ∈ V
be a valuation profile such that v(1) > v(2) > · · · > v(n). Therefore by
Lemma 3, pvcg

j (v) > pvcg
j+1(v). Suppose in negation that G is a VCG cover.

Therefore there exists a bid profile b such that ψG(b) = ϕvcg(v). We obtained
b(l(j)) = pj(b) > pj+1(b) = b(l(j+1)) which contradicts that l(j + 1) ≤ l(j).

To prove the if part, suppose conditions (i) and (ii) hold. Notice that
conditions 1 and 3 in Theorem 4 are satisfied. Note that conditions 1 and
2 in Theorem 5 are also satisfied and therefore condition 2 in Theorem 4 is
also satisfied. This completes the proof.�

Definition 9 (Weighted next-price position auctions) A position auc-
tion G(α,p) is called a weighted next-price position auction if the payment
scheme p is of the following form. For every j ∈ K and for every b ∈ B,

pj(b) =
b(j+1)

cj
, where cj ≥ 1.24

We show:

Theorem 7 Let G be a weighted next-price position auction with the weights
c1, c2, ..., cm. There exists an individually rational mediator that implements
ϕvcg in G if and only if c1 ≥ · · · ≥ cm.

Proof. Let G = G(α,p) be a weighted next-position auction with the
weights c1, c2, ..., cm where cj ≥ 1 for every j = 1, ...,m. We first prove the
only if part. Let ĵ < m be such that cĵ < cĵ+1. It is enough to show that
G is not a VCG cover. Suppose in negation that G is a VCG cover. Let v
be a vector profile in which v1 = v2 = · · · = vn. Therefore pvcg

j (v) = pvcg
j+1(v)

for every j = 1, ...,m − 1 by Lemma 3. In addition s(v, i) = i for every
i ≤ m by the priority rule. Since G is a VCG cover there exists b such
that ψG(b) = ϕvcg(v). Therefore b1 ≥ b2 ≥ · · · ≥ bm and bm ≥ bj for every
j > m, since the allocations under b and under v are identical. In addition
pj(b) = pj+1(b) for every j = 1, ...,m− 1. Therefore

pĵ(b) =
b(ĵ+1)

cĵ
>
b(ĵ+2)

cĵ+1

= pĵ+1(b),

24The requirement that cj ≥ 1 is consistent with our assumption that players do not
pay more than they bid.
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which contradicts that pĵ(b) = pĵ+1(b).
Notice that conditions 1 and 3 in Theorem 4 are satisfied. Note that

conditions 1 and 2 in Theorem 5 are also satisfied and therefore condition 2
in Theorem 4 is also satisfied. This completes the proof. �.

6 Self-Price Position Auctions

Let G be a self-price position auction as described in section 2. In example 1
we showed that when there is one position and two players, the VCG outcome
function is implemented by an individually rational mediator in this auction.
The proof in this example can be easily generalized to show that the VCG
outcome function can be implemented by an individually rational mediator in
a self-price position auction, in which there is one position and an arbitrary
number of players, n ≥ 2.

Next we show that it is impossible to implement the VCG outcome func-
tion, even by a non individually rational mediator, in a self-price position
auction which has more than one position (m > 1).

Theorem 8 Let G be a self-price position auction with more than one po-
sition. There is no mediator that implements the VCG outcome function in
G.

Proof. Let v ∈ V be the following valuation profile. vn = 10 and v1 =
v2 = · · · = vn−1 = 5. The VCG outcome function assigns to this v an
allocation, in which player n receives position 1 and player 1 receives position
2. The VCG payments of players n and 1 are both equal to 5. In order to
implement such an outcome, a mediator must bid 5 on behalf of player n (so
that this player pays 5), and it must bid less than 5 on behalf of any other
player, otherwise, by the priority rule, player n does not receive position 1.
In particular, even if player 1 is assigned to position 2, she will pay less than
5. Hence, no mediator can implement the VCG outcome function in G.�

The impossibility result in Theorem 8 follows from the ties. It remains
true even for random priority rules. In contrast we give below a positive
result for self-price position auctions with the first arrival rule, in which ties
are impossible.

As discussed in Section 3.1, the fixed and random priority rules are just
convenient ways to model the first-arrival rule, which is common in practice.
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When one attempts to directly model position auctions that use the first-
arrival rule without these modeling choices he tackles a lot of modeling prob-
lems. In particular, it is not clear how to model a position auction with the
first-arrival rule as a game with incomplete information. To do this, one has
to allow a player not only to submit a bid but also to decide about the time
of the bid. This raises a lot of additional modeling problems, such as deter-
mining the relationship between the time a player decides to submit a bid
and the time in which this bid is actually recorded. Nevertheless, we next
analyze mediators in position auctions, which use the first-arrival rule. We
will define ex post equilibrium and the notion of implementation by truth-
ful mediation without explicitly modeling well-defined games. We will show
that in this case there is a way to implement the VCG outcome function in a
self-price position auction. In particular, we will find an individually rational
mediator that does the job.

Let G be a position auction with the first-arrival rule. Every mediator
for G has the ability to determine the order in which the bids he submits on
behalf of the players are recorded; He can just submit the bids sequentially,
waiting for a confirmation before submitting the next bid. We need the
following notations.

Every order of bidding can be described by some γ ∈ Γ; i bids before k
if and only if γi < γk. Hence, an order of bids can serve as a priority rule.
For every order of bids γ and a vector of bids b we define s(b, γ, i) as the
position assigned to i. We denote the payment of i when the vector of bids
is b and the order of bidding is γ by qi(b, γ) = ps(b,γ,i)(b), and we denote
ui(vi,b, γ) the utility of i.

A mediator for G should determine the bids of the players who use its ser-
vices and also the order of bids as a function of the reported types. However,
all mediators discussed in this section will use the same rule to determine
the order of bids: If all players report the vector of types v̂, the mediator
uses the order of bids γv̂, which is defined as follows: γv̂

i < γv̂
k if and only if

v̂i > v̂k, or v̂i = v̂k and i < k. For example, if n = 3 and the reported types
are v̂ = (6, 7, 6), then γv̂ = (2, 1, 3). If only a strict subset of the players use
the mediator’s services, the mediator applies the same order of bids rule to
this subset. A mediator for a position auction with the first arrival rule is
therefore defined by a vector m = (mS)S⊆N . However, such a mediator is
called a s-mediator (scheduling mediator) in order to stress the fact that it
determines not only the bids but also the order of bids. To summarize: If
all players use the directed mediator m, and the reported bids are v̂, then
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the directed mediator bids mN(v̂)i on behalf of i, i receives the position
s(v̂, γv̂, i), and pays qi(mN(v̂), γv̂). If only the subset S uses the mediator’s
services, the reported types are v̂S, and the other players bid directly b−S

then the actual order of bids is not uniquely determined. If this order is γ
then the position of i ∈ N is s(b, γ, i), and its payment is qi(b, γ), where
b = (mS(v̂S),b−S). In particular, if every player is using the T-strategy and
the players’ profile of types is v, then the outcome generated by the directed
mediator is

ψm(v) = (s(v, γv),q(mN(v), γv)).

But why should the players use the T-strategy? Assume all players but i
use the T-strategy. If player i deviates from the T-strategy by reporting a
false type to the directed mediator, the resulting outcome is well-defined. On
the other hand, when this player sends a bid directly to the auctioneer, the
resulting outcome is not clear, because the order of bids is not clear. 25

A desired directed mediator would be one that no player would want to
deviate from the T-strategy independently of the order in which the bids are
recorded because of his deviation. More specifically:
Definition: Let G be a position auction with the first-arrival rule, and let m
be a directed mediator for G. The T-strategy profile is an ex post equilibrium
with respect to m if for every player i and type vi, and for every vector of
types of the other players, v−i. the following two conditions hold:
F1: i is not better off when he gives the directed mediator the right of play
and reports a false type. That is, for every v̂i ∈ Vi

ui(vi,mN(vi,v−i), γ
(vi,v−i)) ≥ ui(vi,mN(v̂i,v−i), γ

(v̂i,v−i)).

F2: i is not better off when he bids directly independently of the resulting
order of recorded bids. That is, for every bi ∈ Bi, and for every γ ∈ Γ, which
is consistent with the order of bids of members of N \ {i} resulting from the
vector of types v−i,

ui(vi,mN(vi,v−i), γ
(vi,v−i)) ≥ ui(vi, bi,mN\{i}(v−i), γ).

The notion of individually rational directed mediators is analogously defined:
Definition: Let G be a position auction with the first-arrival rule. A di-
rected mediator for G is individually rational, if for every player, using the
T-strategy guarantees a non-negative level of utility.

25It is clear however, that the resulting order γ is consistent with the well-defined order
of bids of N \ {i}.
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Formally, a directed mediator m for G is individually rational, if for every
player i, for every subset S ⊆ N such that i ∈ S, for every vS, and for every
b−S, ui(vi,mS(vS),b−S, γ) ≥ 0 for every γ ∈ Γ, which is consistent with the
standard order of bids of S determined by the mediator when the reported
types are vS.

The notion of implementation by truthful mediation remains as before:
The directed mediator m implements the VCG outcome function in G if
ψm = ϕvcg.

Our previous results remain true for directed mediators for position auc-
tions with the first arrival rule. Next we show that in contrast to Theorem
8, it is possible to implement the VCG outcome function in every self-price
position auction with the first-arrival rule.

Theorem 9 Let G = G(α,p) be the self-price position auction with the
first arrival rule. There exists an individually rational directed mediator that
implements the VCG outcome function in G.

Proof. We define a directed mediator m as follows:
For every v ∈ V , mN(v) = b(v), where b(v) is the bid profile defined as

follows: bi(v) = pvcg
s(v,γv,i)(v) for every i such that 1 ≤ s(v, γv, i) ≤ m, and

bi(v) =
pvcg

s(v,γv,m)
(v)

2
for every i such that s(v, γv, i) = m+ 1.

For every strict subset, S ⊂ N let mS(vS) = vS.
It is easily shown now, that because the order of bids is determined by v

and not by the bids, ψm(v) = ϕvcg(v) for every v ∈ V .
This implies that it is not beneficial to report a false value to the mediator

because of the fact that telling the truth is a dominant strategy in the VCG
position auction with the fixed priority rule. Suppose player i bids directly in
the auction and all other players but i choose the T -strategy. Let v−i be the
values of all other players. Let bi be player i’s bid, and let b̃ = (bi, v−i). Let
γ̃ ∈ Γ be a priority order consistent with order of bids sent by the directed
mediator m. Let j = s(b̃, γ̃, i). W.l.o.g. we assume that j ∈ K. Since the
mediator bids on behalf of all other players their reported values, player i
will pay at least v(j+1). If player i would have deviated to position j in the
VCG position auction with the fixed order γ̃, then by Lemma 3 part 1, her
payment would have been at least v(j+1). Therefore direct participation in
the position auction is not beneficial for i.

The mediator is individually rational since pvcg
j (b) ≤ b(j) for every j.�
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7 Position Auctions with Quality Factors

Every position auction is player-anonymous except for ties. However, compa-
nies like Google express preferences over players by introducing quality fac-
tors (see e.g., [26]); Player i has a fixed quality factor βi > 0. Let G = G(α,p)
be a position auction , and let β = (β1, · · · , βn) be a vector of quality factors.
we define a new auction, G(β, α,p) as follows:

If the players send the vector of bids b = (b1, b2, · · · , bn) the auctioneer
choose the allocation sβ(b) = s(βb), where βb = (β1b1, β2b2, · · · , βnbn). If
i receives position j, that is s(βb, i) = j, then i pays 1

βi
pj(βb) per click.

Every such auction, G(β, α, p) is called a β-position auction. The β-VCG
position auction is G(β, α,pvcg) . This mechanism chooses the allocation
of the weighted VCG mechanism (see e.g., [23]) with the vector of weights
β. Every player pays his standard weighted VCG payment. As observed by
Varian [26], every position auction with quality factors can be reformulated
as a position auction without quality factors by redefining bidders’ valuations
to be the product of their original valuations and their quality factors, i.e.
viβi is considered to be player i’s valuation. Based on this the following
observation holds:

Observation 10 Let G = G(α,p) be a position auction, and let β = (β1, β2, · · · , βn)
be a vector of quality factors. There exists an individually rational media-
tor that implements the β-VCG outcome function in G(β, α,p) if and only
if there exists an individually rational mediator that implements the VCG
outcome function in G(α,p).

Hence, the β versions of all the theorems proved in previous sections hold.

8 The Remaining Proofs

Proof of Lemma 3:
1. Let j ∈ K. Note that by (3) pvcg

j (b) is a convex combination of b(j+1), b(j+2), ..., b(m+1).
Therefore it never exceeds the maximal element in the sequence, b(j+1).
2. If j = m then for every b ∈ B

pvcg
j (b) = b(j+1) ≥ 0 = pvcg

j+1(b).

Suppose j < m. Hence, j + 1 ∈ K. Since b(j+1) ≥ b(j+2),

pvcg
j (b) ≥
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b(j+2)(αj − αj+1)

αj

+

∑m+1
k=j+2 b(k)(αk−1 − αk)

αj

. (4)

Note that the right-hand-side of (4) equals to

b(j+2) −
m∑

k=j+2

αk

αj

(b(k) − b(k+1)).

Since αj > αj+1,
pvcg

j (b) ≥

b(j+2) −
m∑

k=j+2

αk

αj+1

(b(k) − b(k+1)) = pvcg
j+1(b). (5)

Obviously if b(j+1) = b(j+2) = · · · = b(m+1) then pvcg
j (b) = pvcg

j+1(b). If
b(j+1) = b(j+2) = · · · = b(m+1) doesn’t hold it implies that there is a strong
inequality in either (4) or (5). This implies that pvcg

j (b) > pvcg
j+1(b). �

Proof of Part (i) of Theorem 4:
We will show that the following mediator, Mediator 2, is an individually
rational mediator that implements the VCG outcome function in position
auctions which satisfy conditions 1-3 in the theorem:

Mediator 2

(a) mN(v) = b(v) for every v ∈ V , where b(v) is some bid profile such that
ψG(b(v)) = ϕvcg(v)

(b) For every i and for every v−i ∈ V−i, let vi = (v−i,M(v−i)),where
M(v−i) = ε+ maxj 6=i vj for some ε > 0.

mN\{i}(v−i) = b−i(v
i) for every i ∈ N and every v−i ∈ V−i, where

b(vi) is some bid profile such that ψG(b(vi)) = ϕvcg(vi).

(c) For every S ⊆ N such that 1 ≤ |S| ≤ n − 2, mS(vS) = vS for every
vS ∈ VS.

Let G = G(α,p) be a position auction which satisfies conditions 1-3. Let
m be the mediator defined above. First note that since G is a VCG cover,
(a) and (b) are well defined. We have to show that m implements ϕvcg in
G. By (a), ϕm = ϕvcg. We proceed to show that the T-strategy profile is
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an ex post equilibrium. Note that by the truthfulness property of the VCG
position auction, it is not beneficial for a player i to miss report her value
to the mediator, given that all other players are using the T-strategy. Next
we show that it is not beneficial for a single player i ∈ N to participate in
the auction directly, given that all other players are using the T-strategy.
Assume player i is the only player that participates directly in the auction,
that player i’s type is vi, and that he bids bi. Let v−i be a fixed profile of
types of all other players, and set v = (vi,v−i).

At this case, b−i(v
i) is the vector of bids submitted by the mediator.

Let b̃ = (b−i(v
i), bi) be the profile of bids reported to the auctioneer, and let

j = s(b̃, i) be the position of i resulting from his deviation. Let h = s(b(v), i)
be the position of i if he does not deviate. We have to show that

αh(vi − ph(b(v)) ≥ αj(vi − pj(b̃)).

Because ϕm = ϕvcg, it suffices to show that:

αh(vi − pvcg
h (v)) ≥ αj(vi − pj(b̃)). (6)

Because in the VCG position auction, the utility of a truth-telling agent is
always non-negative, the above inequality, (6) holds trivially if j = −1 or
j = m + 1, since in both cases αj = 0. Therefore, we can assume without
loss of generality that 1 ≤ j ≤ m. Let b′i ∈ Bi be some bid for player i such
that b′i = (v−i, b

′
i)(j).

Before we continue we need the following discussion: The allocation rule
in the VCG auction is defined by the priority rule γ̃ = (1, ...., n). Let V CG(γ)
be the VCG position auction, in which the allocation rule is γ. The (position)
payment scheme in V CG(γ) is the same as in V CG(γ̃). We define s(b, i, γ)
to be player i’s position, when the bid profile is b, and the priority rule is γ.
Note that s(b, i) = s(b, i, γ̃).

Since b′i = (v−i, b
′
i)(j), there exists γ ∈ Γ such that s((v−i, b

′
i), i, γ) = j.

Let ĥ = s(v, i, γ). Observe that v(ĥ) = v(h). Since players with identical
values, which report truthfully have the same utility in the VCG position
auction,

αh(v(h) − pvcg
h (v)) = αĥ(v(ĥ) − pvcg

ĥ
(v)).

Since v(h) = vi,
αh(vi − pvcg

h (v)) = αĥ(vi − pvcg

ĥ
(v)).

Because of the truth-telling property of V CG(γ)
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αĥ(vi − p
vcg(γ)

ĥ
(v)) ≥ αj(vi − p

vcg(γ)
j (v−i, b

′
i)).

Hence, since the payment schemes in V CG and V CG(γ) are identical,

αh(vi − pvcg
h (v)) ≥ αj(vi − pvcg

j (v−i, b
′
i)).

Since the VCG position auction is a GLP position auction, and (v−i, b
′
i)(l) =

vi
(l) for every l > j,

αj(vi − pvcg
j (v−i, b

′
i)) = αj(vi − pvcg

j (vi)).

Because b(vi) ∈ O(vi),

αj(vi − pvcg
j (vi)) = αj(vi − pj(b(vi))).

Because G is a GLP position auction,

αj(vi − pj(b(vi))) = αj(vi − pj(b̃)).

Hence, we proved (6).
Finally we show that m is individually rational. We have to show that

each player, which uses the T-strategy doesn’t pay more than his valuation.
Let l be a player which uses the T-strategy. Assume player l’s value is vl. We
will show that player l never pays more than vl. If all other players choose
the mediator, and report v−l, then since ϕm = ϕvcg, player l’s payment is
pvcg

l (vl,v−l) ≤ vl. Assume not all other players are using the mediator. First
consider the case, where n−1 players are using the mediator. Let i 6= l be the
only player i that participates directly in the auction. Let v−i be the values
reported to the mediator. Let bi be player i’s bid. Let b̃ = (b−i(v

i), bi) be the
profiles of bids reported to the auctioneer, and let j = s(b̃, i) be the position
of i resulting from his deviation. Let h = s(b̃, l) be the position of l resulting
from i’s deviation. We need to show that ph(b̃) ≤ vl. If h ∈ {m + 1,−1},
ph(b̃) = 0 < vl. Therefore we can assume without loss of generality that
1 ≤ h ≤ m. We distinguish between the following cases:

• h > j. Observe that s(b(vi), l) = s(b̃, l). Therefore, s(vi, l) = h.
Hence, vi

(h) = vl. We now show that ph(b̃) ≤ vl. Since G is a GLP
position auction,

ph(b̃) = ph(b(vi)).
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Because b(vi) ∈ O(vi),

ph(b(vi)) = pvcg
h (vi).

From the first part of Lemma 3,

pvcg
h (vi) ≤ vi

(h+1) ≤ vi
(h).

Hence, ph(b̃) ≤ vi
(h) = vl.

• h < j. Observe that s(b(vi), l) = h + 1. Therefore vi
(h+1) = vl. Since

h < j, b̃ ≤ b(vi). Therefore, by the monotonicity condition

ph(b̃) ≤ ph(b(vi)).

Because b(vi) ∈ O(vi),

ph(b(vi)) = pvcg
h (vi).

From the first part of Lemma 3

pvcg
h (vi) ≤ vi

(h+1) = vl.

Therefore
ph(b̃) ≤ vl.

We showed that any player l, which uses the T-strategy does not pay more
than his value, when a single player participates directly in the auction.

Consider the situation in which a subset of players, which contains more
than a single player, participate directly in the auction. The mediator sub-
mits the reported values on behalf of the other players. Therefore, by our
assumption that players never pay more than their own bid, each of these
other players will not pay more than his reported values. In particular a
player l will not pay more than his value. This completes the proof of Part
1 of Theorem 4. �
Proof of Theorem 5:

First we prove the following lemma:
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Lemma 11 Let S ⊂ {1, 2, ..., n}. Let a1, a2, c1, c2 be real numbers such
that a1 < a2 and c1 < c2. Let X1 = X2 = · · · = Xn = [a1, a2]. Let
f : X1 ×X2 × · · · ×Xn → [c1, c2] be a function with the following properties:
(i) f is increasing and continuous in every coordinate i ∈ {1, 2, ..., n} \ S.
(ii) For every i ∈ S and for every x−i, f(xi, x−i) = f(yi, x−i) for every
xi, yi ∈ Xi. (iii) f is on [c1, c2]. Then for every c ∈ (c1, c2) there exists
x = (x1, x2, ..., xn) ∈ X such that a2 > xn > xn−1 > · · · > x1 > a1 and
f(x) = c.

Proof. Note that w.l.o.g it is enough to prove the Lemma for S = φ, since
one can renumber the indices in {1, 2, ..., n} \ S from 1 to |{1, 2, ..., n} \ S|,
and in addition f is not a function of xj for every j ∈ S.

Let c ∈ (c1, c2). By the monotonicity and continuity in every coordinate
of f there exists 0 < ε < a2−a1

n+1
such that f(a1 + ε, a1 + 2ε, ..., a1 + nε) < c

and f(a2−nε, a2− (n− 1)ε, ..., a2− ε) > c. Let g(δ) = f(a1 + ε+ δ, a1 + 2ε+
δ, ..., a1 +nε+ δ). Because g is a continuous function in [0, a2−a1− (n+1)ε],
it obtains any value in [g(0), g(a2−a1−(n+1)ε)], and in particular it obtains
the value c. Let δ′ be such that g(δ′) = c. Therefore f(a1 + ε+ δ′, a1 + 2ε+
δ′, ..., a1 + nε+ δ′) = c, which completes the proof. �
Continue of the proof of Theorem 5:
Let G = G(α,p) be a GLP position auction, which satisfies conditions 1 and
2 in the hypothesis. We need to show that G is a VCG cover. Let v ∈ V be
some valuation profile. It is enough to show that there exists b(v) ∈ B such
that ϕG(b(v)) = ϕvcg(v).

First notice by condition 1 that for every j ∈ K D(j) 6= φ and l(D(j)) <
l(D(j + 1)).

We need the following notations. Let L(j) = {k ≥ 1 : k < l(D(j))}
and let D̃(j) = {k : l(D(j)) ≤ k < l(D(j + 1))}. Note by the above that
D̃(j) 6= φ, and since G is a GLP position auction L(j) 6= φ.

We begin by describing a process, which constructs a sequence of vectors
zm, zm−1, ..., z1 ∈ Z satisfying for every j ∈ K the following:

(i) p̃l(z
j) = pvcg

l (v) for every l ≥ j, and
(ii) For every j ∈ K, if pvcg

j (v) > pvcg
j+1(v) then zj

l > zj
l+1 for every

l ∈ D̃(j), and
(iii) zj

k > 0 for every k.
Hence, for every j ∈ K, we will obtain that p̃j(z

1) = pvcg
j (v), and if

p̃j(z
1) > p̃j+1(z

1) then z1
l > z1

l+1 for every l ∈ D̃(j). In addition z1
k > 0 for

every k = 1, . . . , n. From z1 we will eventually construct b(v).
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First we construct zm. By (3) pvcg
m (v) = v(m+1). Hence, pvcg

m (v) > 0. Let
z′ ∈ Z be such that p̃m(z′) = pvcg

m (v). There exists such a z′ by condition 1.
Notice that there exists at least one coordinate k ∈ D(m) such that z′k > 0;
Otherwise, consider the bid profile, in which m players bid some ε > 0 such
that ε < pvcg

m (v), and all other players bid 0. In this bid profile the player
in position m also pays pvcg

m (v) which is more than his bid contradicting
the assumption that a player never pays more than his bid. By condition
2 there exists z′′ ∈ Z for which z

′′

k > 0 for every k ∈ D(m), z
′′

k 6= z
′′

l for
every k, l ∈ D(m) and p̃m(z

′′
) = p̃m(z′). Let zm ∈ Z be the following vector:

zm
k = z

′′

k for every k ≤ h(D(m)), and zm
k =

z
′′
h(D(m))

2
for every k > h(D(m).

Hence, p̃m(zm) = pvcg
m (v) and for every k = 1, . . . , n zm

k > 0.
For j = m − 1, ..., 1 we construct zj from zj+1 in the following way. We

distinguish between two cases:

1. pvcg
j (v) = pvcg

j+1(v). Let zj ∈ Z be a vector which satisfies: (i) p̃j(z
j) =

pvcg
j (v), (ii) zj

k = zj+1
k for every k ≥ l(D(j + 1). Such a vector zj exists

by condition 1.

2. pvcg
j (v) > pvcg

j+1(v). Let w = (M,M, ...,M) ∈ Z for large enough M ,

such that the vector yj = (wL(D(j+1)), z
j+1
−L(D(j+1))) satisfies pj(y

j) >

pvcg
j (v). Such an M exists by conditions 1 and 2. Let aj = zj+1

l(D(j+1)),

bj = M , cj = pj+1(z
j+1) and dj = pj(y

j). Let f j : [aj, bj]|D̃(j)| → [cj, dj]
be defined by f j(x) = pj(y

j

−D̃(j)
, x). By Lemma 11 there exist a vector

xj = (xj
1, ...., x

j

|D̃(j)|) such that bj > xj
1 > xj

2 > · · · > xj

|D̃(j)| > aj

and f j(xj) = pvcg
j (v). Let zj be defined as follows. zj

k = yj
k for every

k ∈ L(D(j)), zj
k+l(D(j))−1 = xj

k for every k = 1, ..., |D̃(j)| and zj
k = zj+1

k

for every k > h(D(j)).

Let z be the following vector. zk = z1
k for every k ≥ l(D(1)). For every

k ∈ L(D(1)) let zk be a distinct coordinate larger than z1
l(D(1)).

Let b = b(v) ∈ B be the following bid profile. For every i such that
s(v, i) ∈ K let bi = zs(v,i). For every i such that s(v, i) = m + 1 b′i is a
distinct coordinate in z{m+1,...,n}. It remains to show that for every j ∈ K\m,
if v(j) > v(j+1) then bδ(b,j) > bδ(b,j+1). Suppose that v(j) > v(j+1) for some
j ∈ K \m. To complete the proof we distinguish between the following two
cases:
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1. j < l(D(1)). By the construction of z from z1 and since L(D(1)) 6= φ
we obtain that bδ(b,j) > bδ(b,j+1).

2. j ≥ l(D(1)). By the second part of Lemma 1 pvcg
1 (v) > pvcg

2 (v) >
· · · > pvcg

j−1(v) > pvcg
j (v). By condition 1 there exists some 1 ≤ ĵ < j

such that j ∈ D̃(ĵ). By the construction of zĵ from zĵ+1, we obtained

that z ĵ
j > z ĵ

j+1. Observe that zj = z ĵ
j and zj+1 = z ĵ

j+1. Therefore
bδ(b,j) > bδ(b,j+1).

We obtained that b satisfies ϕG(b) = ϕvcg(v), which completes the proof. �
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