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Abstract

Reasoning about agent preferences on a set of alternativee$he aggregation
of such preferences into some social ranking is a fundarhistze in reasoning
about multi-agent systems. When the set of agents and tlué akérnatives co-
incide, we get the ranking systems setting. A famous typaumking systems are
page ranking systems in the context of search engines. &u&mng systems do
not exist in empty space, and therefore agents’ incentivesld be carefully con-
sidered. In this paper we define three measures for quargifjie incentive com-
patibility of ranking systems. We apply these measuresveraéknown ranking
systems, such as PageRank, and prove tight bounds on thefiéveentive com-
patibility under two basic properties: strong monotomnieihd non-imposition. We
also introduce two novel non-imposing ranking systems,gareeral, and the other
for the case of systems with three participants. A full axatization is provided
for the latter.

1 Introduction

The ranking of agents based on other agents’ input is fund&hi® multi-agent sys-
tems (see e.g. Resniekal.(2000)). Moreover, it has become a central ingredient of a
variety of Internet sites, where perhaps the most famousipkes are Google’s PageR-
ank algorithmPaget al. (1998) and eBay'’s reputation systemResnick & Zeckhauser
(2001).

The ranking systems setting can be viewed as a variatioredafltfssical theory of
social choiceArrow (1963), where the set of agents and thefsdternativecoincide
Specifically, we consider dichotomous ranking systems, hiclwvthe agents vote for
a subset of the rest of the agents. This is a natural repeggemf the web page
ranking settingTennenholtz (2004), where the Interneepaare represented by the
agents/alternatives, and the links are represented bg.vote

Some basic work targeted at the foundations of ranking Bysteas been recently
initiated. In particular, basic properties of ranking gyss have been shown to be
impossible to simultaneously accommodateAltman & TenoémnH(2005a), various
known ranking systems have been recently compared withrdegacertain criteria



by Borodinet al. (2005), and several ranking rules have been axiomatizedaklt&
Tennenholtz (2005b); Palacios-Huerta & Volij (2004); 2kit& Volij (2005).

Although the above mentioned work consists of a significamatytof rigorous re-
search on ranking systems, the study did not consider tleetsfbf the agents’ in-
centives on ranking systems. The issue of incentives has ddensively studied in
the classical social choice literature. The Gibbard—8httaite theorem (see Mas-
Colell, Whinston, & Green (1995)) shows that in the cladssceial welfare setting,
it is impossible to aggregate the rankings in a strategypffashion under some basic
conditions. The incentives of the candidates themselves eansidered in the context
of electionsDutta, Jackson, & Le Breton (2001), where ateelampossibility result
is presented. Another notion of incentives was considarde case where a single
agent may create duplicates of itselfCheng & Friedman (R005

In the context of ranking systems, Altman & Tennenholtz @0Bave defined a
notion of a (fully) incentive compatible ranking system dralze categorized the in-
centive compatible ranking systems satisfying severatlmeperties. In this paper,
we generalize this notion of incentive compatibility to &yas that allow deviations
to a limited degree and provide tight bounds for the levelmoéntive compatibility
under two important properties, suggesting and evaluatiagtical ranking systems in
the process.

We define three notions of limited incentive compatibilitydause these notions
to quantify the incentive compatibility of ranking systenfSpecifically, we quantify
the incentive compatibility of the Approval Voting and P&k ranking systems and
prove a significant lower bound on the incentive compatipiif any ranking system
satisfying the basistrong monotonicityproperty, which is satisfied by almost all prac-
tical ranking systems.

In addition, we considenon imposingranking systems, i.e. systems in which
any strict ordering of the agents is feasible. We show tltabagh there are no fully
incentive compatible non imposing ranking systems, we ¢ahsuch a non imposing
ranking system that is incentive compatible up to a dewvialtip one agent by at most
one rank.

Finally, we provide a full axiomatization of a non-imposimgentive compatible
ranking system for the setting with exactly three agents.

2 Ranking systems and Incentive Compatibility

Before describing our results regarding ranking systenesmust first formally define
what we mean by the words “ranking system” in terms of grapiaslimear orderings:

Definition 2.1. Let A be some set. A relatioR C A x A is called arorderingon A
if it is reflexive, transitive, and complete. L&{ A) denote the set of orderings oh

Notation2.2 Let =< be an ordering, ther is the equality predicate of, and< is the
strict order induced by. Formally,a ~ b if and only ifa < b andb < a; anda < b if
and only ifa < b but notb < a.

Given the above we can define what a ranking system is:



Definition 2.3. Let Gy be the set of all directed graphs on a vertexisehat do not
include self edges. fanking systent’ is a functional that for every finite vertex sét
maps graphs’ € Gy to an orderingzEe L(V). If F is defined only on a subset of
Gy we call it apartial ranking system.

One can view this setting as a variation/extension of thesatal theory of social
choice as modeled by Arrow (1963). The vertices in the ramkiystems setting cor-
respond to the agents and alternatives in the social cheftieg and the edges corre-
spond to the votes. In the sequel, we will use these termhdageably. The ranking
systems setting differs from the classical social choitgnggin two main properties.
First, in this setting we assume that the set of voters ande¢hef alternatives coin-
cide, and second, we allow agents only two levels of prefsx@ver the alternatives,
as opposed to Arrow’s setting where agents could rank altews arbitrarily.

2.1 Basic Properties of Ranking Systems

Now we define some basic properties of ranking systems teeguid quantification.

A basic requirement from a ranking system is that when thegena votes (or
all votes) in the system, all agents must be ranked equally.c&ll this requirement
minimal fairness.

Definition 2.4. A ranking systen¥' is minimally fair if for every graphG | = (V,0)
with no edges, and for every graphr = (V,V x V' \ {(v,v)|v € V'}) with all edges
and for everyy, vy € V: vy :gL vy andvy ~& vy,

Another basic requirement from a ranking system is that astaggain additional
votes, their rank must improve, or at least not worsen. $singly, this vague notion
can be formalized in (at least) two distinct ways: The moniity property considers
the situation where one agent has a superset of the votdseazatent has the same
graph, where the positive response property considers the additi a vote for an
agentbetween graphs This distinction is important because the two properties a
neither equivalent, nor imply each other.

Notation2.5. LetG = (V, E') be a graph, and let € V' be a vertex. The predecessor
set ofv is Pz (v) = {v'|(v,v) € E}. The successor set ofis S (v) = {v|(v,v') €
E}.

Definition 2.6. Let F' be a ranking systemF' satisfiesweak positive responsefor
all graphsG = (V, E) and for all(v1,v2) € (V x V) \ E, and for allvg € V: Let
G' = (V,E U (v1,v2)). Then,us <& vy impliesvs <&, vy andvs <L vy implies
U3 <g/ V2.

Definition 2.7. A ranking systen¥’ satisfiesveak monotonicityf for all G = (V, E)
and for allvy, v € Vi If P(v1) C P(vs) thenvy =& ve. F furthermore satisfies
strong monotonicityf P(v1) € P(v2) additionally impliesv; <g Vg.

Another basic property of ranking system is that all stramtkings must have a
graph that generates them.



Definition 2.8. Let F' be a ranking systemf' satisfiesnon impositionif for all V'
and for all strict linear orderingd € L(V): there exists somé& € Gy such that
F(G) = L.

The aforementioned conditions are basic in the sense thaellknown ranking
systems such as PageRank, Hubs&Authorities, and Approtald/satisfy all of them.

2.2 Incentive Compatibility

Ranking systems do not exist in empty space. The results diyaanking systems
frequently have implications for the agents being rankeichvare the same agents
that determine in the ranking. Therefore, the incentivabe$e agents should in many
cases be taken into consideration.

In our approach, we aim that a ranking system will minimizerag’ gain of rank
for stating untrue preferences, under the assumptiontibatdents are interested only
in their own ranking (and not, say, in the ranking of thoseytpeefer). We further
assume that an agent in interested ireipectedank, assuming equally ranked agents
are ordered randomly. Formally, the expected rank (hemitefeferred to simply as
rank) is defined as follows:

Definition 2.9. Therank of a vertexv in a graphG under the ranking systerf is
defined as

rE(w) = |{v’:v’<v}||—|—%|{v’:v’:v}|:
= {0 <o} + L {0V 0 20

Given this definition of rank, we can now define the magnitutd@oagent’s best
deviation:

Definition 2.10. Let F' be ranking system and |ét = (V, E) be a graph for whicl#
is defined. Theleviation magnitudé’ (v) of v in G under ranking systerf is defined

asmax{ T(FV’E/)(’U) - Tg(v)’ F(V,E')is definedvy’ € V\ {v}, 0" € V : (v/,0") €
E & (v',0") € E'}. Thatis, the maximum rank differeneecan obtain for itself by
changing its outgoing vertices @& underF'.

Now we can consider the case where no agent ever has a usehtiae

Definition 2.11. Let F' be ranking system#' is called(fully) incentive compatiblever
a set of graph& if for all graphsG € G and for allv € V: §&(v) = 0.

It has been shown Altman & Tennenholtz (2006) that there ardutly incen-
tive compatible ranking systems satisfying all of the bas@perties we have outlined
above. Therefore, it is essential to weaken this requir¢wfedncentive compatibility.
This can be done in three different ways:

Definition 2.12. Let F' be a ranking system#’ is calledk-worst case incentive com-
patibleover a set of graphs if for all graphsG € G and forallv € V: §& (v) < k. We
say that thevorst case incentive compatibiliof I is k if it is k-worst case incentive
compatible, but notk — ¢)-worst case incentive compatible for alt> 0.



Definition 2.13. Let F' be a ranking system¥' is calledk-mean incentive compatible
over a set of graph§ if for all graphsG € G: >, .\, 65 (v)/|[V| < k. We say that
themean incentive compatibilityf F' is k if it is k-mean incentive compatible, but not
(k — ¢)-mean incentive compatible for all> 0.

Definition 2.14. Let F' be a ranking systent¥' is calledk-agent incentive compatible
for a set of graph& if for all graphsG € G: |{v € V|§E(v) > 0}| < k. We say that
theagent incentive compatibilityf F' is k if it is k-agent incentive compatible, but not
(k — 1)-agent incentive compatible.

Note that wherk is zero, all of these definitions coincide with full incergigom-
patibility as defined above.

Of the basic properties we defined above, Altman & Tennerh@006) have
shown that weak positive response, weak monotonicity amdnmail fairness could
each be satisfied by an (artificially constructed) fully imtbée compatible ranking sys-
tem. This leads us to concentrate on the levels of incentivepatibility attainable
under strong monotonicity and non-imposition. In thesalmental cases, full incen-
tive compatibility cannot be obtained, and thus it is ing¢iregy to try and obtain a more
limited degree of incentive compatibility. In the sequel si®w tight bounds for the
levels of incentive compatibility under these two condigo

3 Incentive Compatibility Under Strong Monotonicity

When we study the incentive compatibility of ranking syssesatisfying strong mono-
tonicity, it is helpful to keep in mind that this property iatsfied by almost all prac-
tical ranking systems, including Approval Voting, PageRand Hubs&Authorities.
Specifically, we are going to quantify the incentive comipitity of the Approval Vot-
ing and PageRank ranking systems, when the out-degree lofveaiex is limited to
some constark.

Definition 3.1. The approval votingranking systemAV is defined ass <4V b <
|P(a)] < |P(b)].

First, we are going to prove a general negative result atanking systems that
satisfy strong monotonicity.

Theorem 3.2. There exists no strongly monotone ranking system tt‘@t ise)-worst
case incentive compatible on the set of graphs with max egtegk for all ¢ > 0.
Furthermore, there exists no minimally fair strongly mamu ranking system that is
(% — g)-mean incentive compatible on the set of graphs with maxdegteek for all

e > 0.

Proof. Assume a strongly monotone ranking systéiand assume a grapi =

(V, E) with k+1 verticesV = {vg, vy, ..., v} and edge® = {(vg,v1), (vo, v2), ..., (vo, Vi) }.
Assume a strongly monotorevorst case incentive compatible ranking systemBy

strong monotonicityF' ranks

F F F F
Vo =g V1 g V2 Mg g Uk



This givesrf (vg) = % However, ifvg changes its votes th the rank will become (by
strong monotonicityyg ~ vy ~ vy ~ -+ ~ v, and thuyg, (vg) = % We have
shown a manipulation of magnitude in contradiction to the fact that is (£ —¢)-IC,
wheres > 0.

Now assume a minimally fair strongly monotone ranking syst€. We will show
agraphi = (V, E) in which all agents have a deviation of magnitlgjeThe graph s
the complete clique with + 1 vertices:V = {0,...,k} andE =V x V\ {(v,v)|v €
V'}. Note that this graph has a maximal out-degrek afd F' ranks all agents equally
(due to minimal fairness). However, if any agentemoves all its outgoing edges to
form a graphG’, then that agent will be, by strong monotonicity, rankedweall other
agents. Thug;Z (v) = £2L, while £ (v) = k + L. ThussZ (v) = & forallv € V.
Therefore F”’ is not(% — €)-mean incentive compatible for all> 0. O

We can now quantify the incentive compatibility of the apmiovoting ranking
system, showing that the aforementioned lower bound is.tigh

Proposition 3.3. The approval voting ranking systeAl” satisfies the following over
the set of graphs with max out-degree

e The worst case incentive compatibility 47 is %
e The mean incentive compatibility dff” is %

e The agent incentive compatibility ¢fl” over the set of graphs with vertices
(n>1)isn.

Proof. First we will prove thatAV}, is g—worst case incentive compatible. L6t =
(V,E),G" = (V,E') € G be graphs that differ in the outgoing edges fromNote
that| P (v)| = |Pge/(v)| as neitherG nor G’ include self-edges. Le$y. = {u €
Sa(v) \ S¢r(v)}. Note thatSge;| < k. Forallu € V' \ Sgeit |Po(u)| = [{w](w,u) €
EY| < {w|(w,u) € E'}| = |Par(u)], and thug Per (u)| < [Par(v)| = [Pa(u)| <
|Pc(v)| and|Pgr(u)| < |Pgr(v)] = |Pa(u)|] < |Pg(v)|. Furthermore, for alk, €
Sdel : |sz(u)| = |Pg(u)| + 1. LetS, = {u € Sger : |Pg(u)| = |Pg(1})|} and
Sy = {u € Sger - |Pg(u)| +1= |Pg(’l})|} Now,
el () =g’ (v) = VI <e v}

—3 [{v'lv" <c v}

+3 [{v'lv" Zer v}

—3 {v'lv" =g v}

< 3Sal + 319 < 3|S4a| < &

The %—mean incentive compatibility immediately follows, and th-agent incentive
compatibility is trivial. AV}, satisfies strong monotonicity and minimal fairness, and
thus it is not(£ — €)-mean incentive compatible, and r{ét — ¢)-worst case incentive
compatible for ale > 0.



To show thatdV;, is not(n — 1)-agent incentive compatible over the set of graphs
with n vertices ¢ > 1), assume the full loop with verticesG = (V, F) defined as
follows:

Vv = {0,....,n—1}
E = {(¢,i+1 modn),|i=0...n—1}

Now, by removing all of its edges, each agent can improvevits telative rank by
1, and thus all agents have a deviation, and thdi%’ is not(n — 1)-agent incentive
compatible. O

We now define the PageRank matrix which is the matrix whichuwrag the random
walk created by the PageRank procedure. Namely, in thisggsowe start in a random
page, and iteratively move to one of the pages that are litdkdxy the current page,
assigning equal probabilities to each such page.

Definition 3.4. LetG = (V, E) be a directed graph, and assume= {vy,va, ..., v, }.
ThePageRank Matrix4 (of dimension: x n) is defined as:

[Ag], . = 1/1Sa(vj)l - (vj,vi) € E
" 0 Otherwise.

The PageRank procedure will rank pages according to thessay probability
distribution obtained in the limit of the above random walks is formally defined as
follows:

Definition 3.5. Let G = (V, E) be some strongly connected graph, and assime
{v1,v9,...,v,}. Let0 < d < 1 be adamping factor Let 7 be the unique solution
of the systen(1 —d) - Ag -7+d-(1 1 --- 1)T =7whered r; = n. The
PageRankP R (v;) of a vertexv; € V is defined a? R (v;) = r;. ThePageRank
ranking systenis a ranking system that for the vertex $étmapsG to <L%, where
=<EF is defined as: for alb;, v; € V:v; <EE v; ifand only if PRg(v;) < PRg(v;).

We will now quantify the incentive compatibility of the Pdg@nk ranking system:

Proposition 3.6. The PageRank ranking syste?ri with damping factorl is not (5 —
2)-mean incentive compatible ndn. — 1)-agent incentive compatible on the set of
graphs withn vertices ¢ > 2) and out-degreé.

Proof. Consider the grap&y = (V, E) whereV ={0,...,n—1}andE = {(i,i+ 1
mod n)|i = 0,...n — 1}. In this graphP R ranks all agents equally due to symmetry.
Letv € V be some agent. Assume wlog= n — 1 and letG’ = (V, E’) be defined
asE' = E\ {(n—1,0)} U{(n —1,n — 2)}. Applying linear algebra, we conclude
thatPRranks0 <1 < -+ <n—3 <n—1<n-2inG" and thusrEF(v) =
r&f(n — 1) = n — 1.5. However,r£R(v) = 2, and thussE%(v) > 253, This is
true for allv € V, so we see thaPR is not (2 — 2)-mean incentive compatible nor

2
(n — 1)-agent incentive compatible for an arbitrary graghvith n vertices. O

A similar lower bound showing deviations of magnitudén) by all agents can be
shown for the Hubs&Authorities ranking system as presebieldleinberg (1999).



4 Non-imposing Ranking Systems

Recall that non-imposing ranking systems are those thatacmdate any strict order
on the vertices. We will now show that this requirement carb® satisfied when
requiring full incentive compatibility.

Fact 4.1. There exists no non-imposing incentive compatible rangjrsgem.

Proof. Assume the vertex sét = {v1, v2}. There are two potential edges in this graph
e1 = (vi,v9) andes = (ve,v1). LetG = (V, E) be a graph s.tv; <¢ v2 and letG’

be agraphs.tvy < v1. Asrgr(v1) # rg(v1) andrg(ve) # res (ve), from incentive
compatibility, the symmetric differend@ ® £’ = (EUE")\ (ENE’) = {e1,e2}. Let
E" = E®{e1} = E' ®{ez}. Fromincentive compatibilityc: (v1) = rg(vi) = & =
Tg/(’UQ) =rqgr (1)2), but this cannot be asi;fl ~aqr V2, TG (1)1) =rgr (’Ul) =1. O

We will now show a 1-worst case incentive compatible ranldpgtem satisfying

non-imposition. This ranking system is also 1-agent inwertompatible, which sets
a tight bound.

Theorem 4.2. There exists a ranking systefthat satisfies non-impositiofi;worst
case incentive compatibilit%,—mean incentive compatibility on graphs wittvertices,
1-agent incentive compatibility, and weak positive resgons

Proof. The ranking systen# is defined as follows: Assume a gragh= (V, F) with
V ={v1,v9,...,v,}. Foreachv # v, we define

p(v) = {IP(v)\S(vlﬂ +n veS()
|P(v) N S(v1)) v ¢ S(vy)

Now we define a strict ordering* onV '\ {v; }:

v vy & [p(vi) < pvy)] Vv
V[p(vi) = p(vj) Ni < j].

Given this ordering we can finally define’::

vi2Gv; & ([(EELINF#ELAv 250V
V(i =1A[{uJu =" v;}| > |P(v1)]) V
VG = 1A {ulu <* v} < [Plon).

The weak positive response property is satisfied becaustoedaf an edgdu, v)
either weakly increases(v) if v # vy, increasing the relative rank of or increases
|P(v1)] if v = vy, and thus again increases the relative rank. of

To proveF satisfies non-imposition, assume a vertexiéet {vy,...,v,} and
strict ordering=’ on V. Let uy,us,...,u,—1 be the vertices i/ \ {v:} ordered



accordingto=’ and letk = |{v € V : v <" 11 }|. LetG = (V, E) be the graph defined
as follows:

i > 252} U {(us, v1)]i < K} U
{(uz,uj)|”— <i<j—-1+3%}U
J)|z<.7 — 5 1}

First note that for alt,; € V' \ {v1}:

—~

—~
S
ﬁ

plui) =

i+ 2] P>t

i—1 Otherwise
Thus,u; <* ug <* -+ <* u,_1. As |P(v1)| =k—1,u <g <g Up—1 <g
vy <& up <E - <E u,—1, and thus<£==<’, as required.

We will now prove the incentive compatibility features ofthanking system. Let

G = (V,E) be some graph. Note that both* and <% are strict orderings. The
deviation magnitude of agent is 0, as its rank is dependent only on its in-degree,
which it cannot manipulate:

5G(v) = max{r{y p,(v) —r&(v)} =
max{(| P,z (v1)| + 5) = (I1Pa(v1)| + 3)} =
= max{|Pg(v1)| = [Pa(v1)[} = 0.
Letv; € V'\ {v1} be an agent. The rank; (v;) is:
Tg(vj) = % |{v/ s <g v1}| + % ‘{v/ s jg Uz}‘ =
= ‘{v/:v’ <g vi}‘—i-%:
H{o' v <* v |+ 1.5 [{v'|v) 2* v} > |P(v1)]
[{v/ 10" <*v;}|+ 5  Otherwise

Now, [{v’: v <* v;}| is independent of the outgoing edgeswfgiven S(v1), as
v; € S(vy) iff its outgoing edges are used to rank agegts(v;). Thus, the only
manipulationv; might do is to changéP(v; )|, and thus increase its rank by 1. In
order to increase its rank;; must decreaséP(v;)|. v; can do so by at most 1,
by removing an edgév;,v;) if it exists. This manipulation can only be done if
{v'|v/ <* v;}| = |Pa(v1)]. As <*is strict and0 < |Pg(v1)| < n — 1, there ex-
ists exactly one agent satisfying this condition.

Thus, for somey; € V: §&(v;) < 1,and for allv; € V' \ {v;}: 65 (v;) = 0. So we
conclude that" is 1-worst case incentive compatiblg;mean incentive compatible on
graphs withn vertices, and -agent incentive compatible. O

4.1 A Fully Incentive Compatible Non-imposing Ranking Sysem
for 3 Agents

We have previously shown that there exists no general ineecimpatible non-imposing
ranking system. However, if we limit our domain we may findtttieere exist such



Vo — U1

Vo — U2

[ v2 = v | v1 — vy

~

V1 < Vg < Vg

V1 — Vg

v2 < V1 < Vg

V1 < U2 < Vg

[v2 = v [ v — 0y

Vo < V2 < U1

Vg < U1 < Vg

V1 — Vo | V2 < Vg X V1 ~

Figure 1: Schematic representation of the three-plureditking systems

ranking systems. In this section, we will provide a full axiatization for non-imposing
incentive compatible ranking systems when there are gxdute agents.

Definition 4.3. A ranking system is callethree-plurality if for every graphG =
(V, E) such thaiV'| = 3 there exists an ordering), v1, v2 of the vertices inV such
thatF' ranksu < v < f(u) < f(v), wheref(v) is one of the following:

fi(vi)
fa(vi) =

I'{(vi-1,vi) € E] + I[(vig1,vi-1) ¢ E]
I [(Uifl, Ui) cEAN (Uifl, viJrl) ¢ E] +
+I[(’Ui+1,’l}i) c bV (Ui+17Ui—l) §é E] R

where all the indices are calculated modulo 3, anslthe indicator function.

There are exactly four three-plurality ranking systemgfaphs withl” = {vg, v1, va}.
These ranking systems all implement plurality voting whanteagent must vote, as
illustrated in Figure 1, and differ in the interpretatiortioé cases where agents cast no
votes or both votes.

Theorem 4.4. Let F' be a ranking system over the set of graphs with 3 vertides.
is three-plurality iff it satisfies all of the following cstia: incentive compatibility,
non-imposition, weak positive response, and minimal &g

Furthermore, these conditions are independent.

Proof. We must first show that any three-plurality ranking systésatisfies these four
criteria. Incentive compatibility and non-imposition ceasily be deduced from Figure
1. To show thatt" satisfies weak positive response, note that any added(eflge)
may only increas¢ (v;) and decreasg(vy) for k # j, thus satisfying weak positive
response. Minimal fairness is also satisfied by noticingsthremetry in the definitions
of f1, fa.

Now we need to prove that any ranking systéfrsatisfying the four criteria is
three-plurality. By non-imposition, there exist grapghis, G2, G3 such that:v 451
v <G, V2, U2 <&, Vo <&, vi,andvy <& vy <&, vo. The set of allowable strategies
for agentv; for i € {0,1,2}is {s}, s}, 55,55} = o(V \ {v;}). We can use strategy
vectors of the forn{s{, s}, s7) to represent the grapli, s) U s} U s7.).

Let 51, $3, $3 be the strategy vectors representiig G-, G3 respectively. By in-
centive compatibilityg; ands; differ by the strategies of at least 2 agents. Assume that
s # 89 N st # 53 A s? # s2. By IC, in the graph(s9, si,s?): 7(vg) = 0.5 and in the
graph(s9, st,s3): r(v1) = 2.5. As these two graphs differ only in the outgoing edges
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of vg, its rank must be equal, thus must be@s) = 1.5 in both. Therefore, in both
(59, s1,5%) and(s3, si, s3), F ranksvy < v < vy. Again from IC, graph(s9, s3, s7)
must be ranked, < vo < vy and(s?, si, s3) must be ranked, < v; < v2 . We can
now letGs = (s9, s3, s?), and thus differ front7; by the strategies of only two agents.

It is easy to see we can always chodse such thatGG; and Gy only differ in
the strategies ofy andwv;. Similarly, G3 can be chosen such th@t, and G5 differ
only by the strategies of; andv,. Assume now thatl # si. By IC, in graph
(89,53, 8%): 7(va) = r(v1) = 1.5 and thusyy ~ v; =~ ve. Now, in graph(s?, si, s?):
r(vg) = r(v1) = 1.5 and thusvg ~ vy ~ ve. Now, in graph(sY, s3, s2): r(v1) = 0.5
andr(vg) = 1.5, S0v; < vy < vo. We now letGs = (s9, s, s3) and thus now every
pair of graphs fromGy, G2, G5 differ by strategies of two agents. After renaming
strategies, we get a structure isomorphic to the one destibFigure 1, but without
any mapping between the names of the strategies and acugfalsedection by the
agents.

We will first show that the additional strategies of the agesimply reflect these
existing strategies. Iiis, s1,s?), by IC, 7(vg) = 1.5. So assume thakt’ ranks
vy < vy < v1. However, in that case ifsg, s, s?), r(v1) = r(vg) = 2.5, which
is impossible. However, in the two remaining cases it is éasee that$ reflectss!
or s9. The same is true for all other agents. Therefore, we onlg neenap the four
strategies for each agent to one of the two options for theritag

Note that agent, is strengthened when agentswitches froms{ to s§ and agent
vy is weakened. Assumg(vy) = {v1} maps tos), then by weak positive response,
S(vg) = {v1,v2} andS(vg) = () must also map te9, and furthermore thefi (vy) =
{va} must also map ta9, in contradiction to the fact that) must be playable (by
non-imposition). Similarly, in all cases whejg(v)| = 1, S(v) maps to the relevant
strategy in Figure 1.

By minimal fairness, wher; = 0, the strategy profile must bg?, s1, s%) or
(59, s3,53), thus if S(vy) = 0 maps to a strategy’, thenS(v;) = 0 andS(v2) = (Z)
must map to strategies ands? respectively. The same goes f6fvy) = {v1,v2)
if it maps to a strategy?, thenS(vl) = {wg,v2} andS(ve) = {vg, v1} must map to
strategies! ands? respectively.

So, we are left with four mapping options:

e S(vg) = 0 maps tosd andS(vg) = {v1, v2} maps tos? .
S(vg) = 0 maps tos{ andS(vg) = {v1,ve} maps tos) .
) =

S(vg) = 0 andS(vg) = {v1, v2} both map tos .

e S(vg) =0 andS(vy) = {v1,v2} both map tos? .

These mapping options exactly correspond to the four thheality ranking systems
— The first two correspond t¢;, and the second two tf,. Of each pair, the first
corresponds to the ordering, v1, v and the second correspondsitQvs, vs.

We have shown any ranking system satisfying the four camtitimust be three-
plurality.

To show that the conditions are independent we must shoerdift ranking sys-
tems satisfying all conditions except one:
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e Incentive compatibility — The approval voting ranking ssstsatisfies all afore-
mentioned conditions except incentive compatibility.

e Non-imposition— The trivial ranking system that alwaysksaall vertices equally
satisfies IC, weak positive response and minimal fairness.

e Weak positive response — We can swap the meaningsaifids’, for all agents
and get a ranking system satisfying all conditions excepiupmsitive response.

e Minimal fairness — If we do not assume minimal fairness, we aasign the
strategies folS(v) = @ andS(v) = V' \ {v} differently for each agent. O
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