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Abstract

Reasoning about agent preferences on a set of alternatives,and the aggregation
of such preferences into some social ranking is a fundamental issue in reasoning
about multi-agent systems. When the set of agents and the setof alternatives co-
incide, we get the ranking systems setting. A famous type of ranking systems are
page ranking systems in the context of search engines. Such ranking systems do
not exist in empty space, and therefore agents’ incentives should be carefully con-
sidered. In this paper we define three measures for quantifying the incentive com-
patibility of ranking systems. We apply these measures to several known ranking
systems, such as PageRank, and prove tight bounds on the level of incentive com-
patibility under two basic properties: strong monotonicity and non-imposition. We
also introduce two novel non-imposing ranking systems, onegeneral, and the other
for the case of systems with three participants. A full axiomatization is provided
for the latter.

1 Introduction

The ranking of agents based on other agents’ input is fundamental to multi-agent sys-
tems (see e.g. Resnicket al.(2000)). Moreover, it has become a central ingredient of a
variety of Internet sites, where perhaps the most famous examples are Google’s PageR-
ank algorithmPageet al. (1998) and eBay’s reputation systemResnick & Zeckhauser
(2001).

The ranking systems setting can be viewed as a variation of the classical theory of
social choiceArrow (1963), where the set of agents and the set of alternativecoincide.
Specifically, we consider dichotomous ranking systems, in which the agents vote for
a subset of the rest of the agents. This is a natural representation of the web page
ranking settingTennenholtz (2004), where the Internet pages are represented by the
agents/alternatives, and the links are represented by votes.

Some basic work targeted at the foundations of ranking systems has been recently
initiated. In particular, basic properties of ranking systems have been shown to be
impossible to simultaneously accommodateAltman & Tennenholtz (2005a), various
known ranking systems have been recently compared with regard to certain criteria

1



by Borodinet al. (2005), and several ranking rules have been axiomatized Altman &
Tennenholtz (2005b); Palacios-Huerta & Volij (2004); Slutzki & Volij (2005).

Although the above mentioned work consists of a significant body of rigorous re-
search on ranking systems, the study did not consider the effects of the agents’ in-
centives on ranking systems. The issue of incentives has been extensively studied in
the classical social choice literature. The Gibbard–Satterthwaite theorem (see Mas-
Colell, Whinston, & Green (1995)) shows that in the classical social welfare setting,
it is impossible to aggregate the rankings in a strategy-proof fashion under some basic
conditions. The incentives of the candidates themselves were considered in the context
of electionsDutta, Jackson, & Le Breton (2001), where a related impossibility result
is presented. Another notion of incentives was considered in the case where a single
agent may create duplicates of itselfCheng & Friedman (2005).

In the context of ranking systems, Altman & Tennenholtz (2006) have defined a
notion of a (fully) incentive compatible ranking system andhave categorized the in-
centive compatible ranking systems satisfying several basic properties. In this paper,
we generalize this notion of incentive compatibility to systems that allow deviations
to a limited degree and provide tight bounds for the levels ofincentive compatibility
under two important properties, suggesting and evaluatingpractical ranking systems in
the process.

We define three notions of limited incentive compatibility and use these notions
to quantify the incentive compatibility of ranking systems. Specifically, we quantify
the incentive compatibility of the Approval Voting and PageRank ranking systems and
prove a significant lower bound on the incentive compatibility of any ranking system
satisfying the basicstrong monotonicityproperty, which is satisfied by almost all prac-
tical ranking systems.

In addition, we considernon imposingranking systems, i.e. systems in which
any strict ordering of the agents is feasible. We show that although there are no fully
incentive compatible non imposing ranking systems, we can find such a non imposing
ranking system that is incentive compatible up to a deviation by one agent by at most
one rank.

Finally, we provide a full axiomatization of a non-imposingincentive compatible
ranking system for the setting with exactly three agents.

2 Ranking systems and Incentive Compatibility

Before describing our results regarding ranking systems, we must first formally define
what we mean by the words “ranking system” in terms of graphs and linear orderings:

Definition 2.1. Let A be some set. A relationR ⊆ A × A is called anorderingon A
if it is reflexive, transitive, and complete. LetL(A) denote the set of orderings onA.

Notation2.2. Let� be an ordering, then≃ is the equality predicate of�, and≺ is the
strict order induced by�. Formally,a ≃ b if and only if a � b andb � a; anda ≺ b if
and only ifa � b but notb � a.

Given the above we can define what a ranking system is:
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Definition 2.3. Let GV be the set of all directed graphs on a vertex setV that do not
include self edges. Aranking systemF is a functional that for every finite vertex setV
maps graphsG ∈ GV to an ordering�F

G∈ L(V ). If F is defined only on a subset of
GV we call it apartial ranking system.

One can view this setting as a variation/extension of the classical theory of social
choice as modeled by Arrow (1963). The vertices in the ranking systems setting cor-
respond to the agents and alternatives in the social choice setting, and the edges corre-
spond to the votes. In the sequel, we will use these terms interchangeably. The ranking
systems setting differs from the classical social choice setting in two main properties.
First, in this setting we assume that the set of voters and theset of alternatives coin-
cide, and second, we allow agents only two levels of preference over the alternatives,
as opposed to Arrow’s setting where agents could rank alternatives arbitrarily.

2.1 Basic Properties of Ranking Systems

Now we define some basic properties of ranking systems to guide our quantification.
A basic requirement from a ranking system is that when there are no votes (or

all votes) in the system, all agents must be ranked equally. We call this requirement
minimal fairness.

Definition 2.4. A ranking systemF is minimally fair if for every graphG⊥ = (V, ∅)
with no edges, and for every graphG⊤ = (V, V × V \ {(v, v)|v ∈ V }) with all edges
and for everyv1, v2 ∈ V : v1 ≃F

G⊥
v2 andv1 ≃F

G⊤
v2.

Another basic requirement from a ranking system is that as agents gain additional
votes, their rank must improve, or at least not worsen. Surprisingly, this vague notion
can be formalized in (at least) two distinct ways: The monotonicity property considers
the situation where one agent has a superset of the votes another agent hasin the same
graph, where the positive response property considers the addition of a vote for an
agentbetween graphs. This distinction is important because the two properties are
neither equivalent, nor imply each other.

Notation2.5. Let G = (V, E) be a graph, and letv ∈ V be a vertex. The predecessor
set ofv is PG(v) = {v′|(v′, v) ∈ E}. The successor set ofv is SG(v) = {v′|(v, v′) ∈
E}.

Definition 2.6. Let F be a ranking system.F satisfiesweak positive responseif for
all graphsG = (V, E) and for all(v1, v2) ∈ (V × V ) \ E, and for allv3 ∈ V : Let
G′ = (V, E ∪ (v1, v2)). Then,v3 �F

G v2 impliesv3 �F
G′ v2 andv3 ≺F

G v2 implies
v3 ≺F

G′ v2.

Definition 2.7. A ranking systemF satisfiesweak monotonicityif for all G = (V, E)
and for allv1, v2 ∈ V : If P (v1) ⊆ P (v2) thenv1 �F

G v2. F furthermore satisfies
strong monotonicityif P (v1) ( P (v2) additionally impliesv1 ≺F

G v2.

Another basic property of ranking system is that all strict rankings must have a
graph that generates them.
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Definition 2.8. Let F be a ranking system,F satisfiesnon impositionif for all V
and for all strict linear orderingsL ∈ L(V ): there exists someG ∈ GV such that
F (G) ≡ L.

The aforementioned conditions are basic in the sense that all well-known ranking
systems such as PageRank, Hubs&Authorities, and Approval Voting satisfy all of them.

2.2 Incentive Compatibility

Ranking systems do not exist in empty space. The results given by ranking systems
frequently have implications for the agents being ranked, which are the same agents
that determine in the ranking. Therefore, the incentives ofthese agents should in many
cases be taken into consideration.

In our approach, we aim that a ranking system will minimize agents’ gain of rank
for stating untrue preferences, under the assumption that the agents are interested only
in their own ranking (and not, say, in the ranking of those they prefer). We further
assume that an agent in interested in itsexpectedrank, assuming equally ranked agents
are ordered randomly. Formally, the expected rank (henceforth referred to simply as
rank) is defined as follows:

Definition 2.9. The rank of a vertexv in a graphG under the ranking systemF is
defined as

rF
G(v) = |{v′ : v′ ≺ v}| | + 1

2 |{v
′ : v′ ≃ v}| =

= 1
2 |{v

′ : v′ ≺ v}| + 1
2 |{v

′ : v′ � v}| .

Given this definition of rank, we can now define the magnitude of an agent’s best
deviation:

Definition 2.10. Let F be ranking system and letG = (V, E) be a graph for whichF
is defined. Thedeviation magnitudeδF

G(v) of v in G under ranking systemF is defined

asmax{rF
(V,E′)(v) − rF

G(v)
∣

∣

∣
F (V, E′) is defined, ∀v′ ∈ V \ {v}, v′′ ∈ V : (v′, v′′) ∈

E ⇔ (v′, v′′) ∈ E′}. That is, the maximum rank differencev can obtain for itself by
changing its outgoing vertices inG underF .

Now we can consider the case where no agent ever has a useful deviation:

Definition 2.11. LetF be ranking system.F is called(fully) incentive compatibleover
a set of graphsG if for all graphsG ∈ G and for allv ∈ V : δF

G(v) = 0.

It has been shown Altman & Tennenholtz (2006) that there are no fully incen-
tive compatible ranking systems satisfying all of the basicproperties we have outlined
above. Therefore, it is essential to weaken this requirement of incentive compatibility.
This can be done in three different ways:

Definition 2.12. Let F be a ranking system.F is calledk-worst case incentive com-
patibleover a set of graphsG if for all graphsG ∈ G and for allv ∈ V : δF

G(v) ≤ k. We
say that theworst case incentive compatibilityof F is k if it is k-worst case incentive
compatible, but not(k − ε)-worst case incentive compatible for allε > 0.
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Definition 2.13. Let F be a ranking system.F is calledk-mean incentive compatible
over a set of graphsG if for all graphsG ∈ G:

∑

v∈V δF
G(v)/|V | ≤ k. We say that

themean incentive compatibilityof F is k if it is k-mean incentive compatible, but not
(k − ε)-mean incentive compatible for allε > 0.

Definition 2.14. Let F be a ranking system.F is calledk-agent incentive compatible
for a set of graphsG if for all graphsG ∈ G: |{v ∈ V |δF

G(v) > 0}| ≤ k. We say that
theagent incentive compatibilityof F is k if it is k-agent incentive compatible, but not
(k − 1)-agent incentive compatible.

Note that whenk is zero, all of these definitions coincide with full incentive com-
patibility as defined above.

Of the basic properties we defined above, Altman & Tennenholtz (2006) have
shown that weak positive response, weak monotonicity and minimal fairness could
each be satisfied by an (artificially constructed) fully incentive compatible ranking sys-
tem. This leads us to concentrate on the levels of incentive compatibility attainable
under strong monotonicity and non-imposition. In these fundamental cases, full incen-
tive compatibility cannot be obtained, and thus it is interesting to try and obtain a more
limited degree of incentive compatibility. In the sequel weshow tight bounds for the
levels of incentive compatibility under these two conditions.

3 Incentive Compatibility Under Strong Monotonicity

When we study the incentive compatibility of ranking systems satisfying strong mono-
tonicity, it is helpful to keep in mind that this property is satisfied by almost all prac-
tical ranking systems, including Approval Voting, PageRank, and Hubs&Authorities.
Specifically, we are going to quantify the incentive compatibility of the Approval Vot-
ing and PageRank ranking systems, when the out-degree of each vertex is limited to
some constantk.

Definition 3.1. The approval votingranking systemAV is defined asa �AV b ⇔
|P (a)| ≤ |P (b)|.

First, we are going to prove a general negative result about ranking systems that
satisfy strong monotonicity.

Theorem 3.2. There exists no strongly monotone ranking system that is(k
2 − ε)-worst

case incentive compatible on the set of graphs with max out-degreek for all ε > 0.
Furthermore, there exists no minimally fair strongly monotone ranking system that is
(k
2 − ε)-mean incentive compatible on the set of graphs with max out-degreek for all

ε > 0.

Proof. Assume a strongly monotone ranking systemF and assume a graphG =
(V, E) with k+1 verticesV = {v0, v1, . . . , vk} and edgesE = {(v0, v1), (v0, v2), . . . , (v0, vk)}.
Assume a strongly monotonel-worst case incentive compatible ranking systemF . By
strong monotonicity,F ranks

v0 ≺F
G v1 ≃F

G v2 ≃F
G · · · ≃F

G vk.
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This givesrF
G(v0) = 1

2 . However, ifv0 changes its votes to∅, the rank will become (by
strong monotonicity)v0 ≃ v1 ≃ v2 ≃ · · · ≃ vk, and thusrF

G′(v0) = k+1
2 . We have

shown a manipulation of magnitudek
2 , in contradiction to the fact thatF is (k

2 −ε)-IC,
whereε > 0.

Now assume a minimally fair strongly monotone ranking system F ′. We will show
a graphG = (V, E) in which all agents have a deviation of magnitudek

2 . The graph is
the complete clique withk +1 vertices:V = {0, . . . , k} andE = V ×V \ {(v, v)|v ∈
V }. Note that this graph has a maximal out-degree ofk andF ranks all agents equally
(due to minimal fairness). However, if any agentv removes all its outgoing edges to
form a graphG′, then that agent will be, by strong monotonicity, ranked above all other
agents. Thus,rF ′

G (v) = k+1
2 , while rF ′

G′ (v) = k + 1
2 . ThusδF ′

G (v) = k
2 for all v ∈ V .

Therefore,F ′ is not(k
2 − ε)-mean incentive compatible for allε > 0.

We can now quantify the incentive compatibility of the approval voting ranking
system, showing that the aforementioned lower bound is tight.

Proposition 3.3. The approval voting ranking systemAV satisfies the following over
the set of graphs with max out-degreek:

• The worst case incentive compatibility ofAV is k
2 .

• The mean incentive compatibility ofAV is k
2 .

• The agent incentive compatibility ofAV over the set of graphs withn vertices
(n > 1) is n.

Proof. First we will prove thatAVk is k
2 -worst case incentive compatible. LetG =

(V, E), G′ = (V, E′) ∈ G be graphs that differ in the outgoing edges fromv. Note
that |PG(v)| = |PG′(v)| as neitherG nor G′ include self-edges. LetSdel = {u ∈
SG(v) \ SG′(v)}. Note that|Sdel| ≤ k. For allu ∈ V \ Sdel: |PG(u)| = |{w|(w, u) ∈
E}| ≤ |{w|(w, u) ∈ E′}| = |PG′(u)|, and thus|PG′(u)| < |PG′(v)| ⇒ |PG(u)| <
|PG(v)| and |PG′(u)| ≤ |PG′(v)| ⇒ |PG(u)| ≤ |PG(v)|. Furthermore, for allu ∈
Sdel : |PG′(u)| = |PG(u)| + 1. Let Sa = {u ∈ Sdel : |PG(u)| = |PG(v)|} and
Sb = {u ∈ Sdel : |PG(u)| + 1 = |PG(v)|} Now,

rAV
G′ (v) − rAV

G (v) = 1
2 |{v

′|v′ ≺G′ v}|

− 1
2 |{v

′|v′ ≺G v}|

+ 1
2 |{v

′|v′ �G′ v}|

− 1
2 |{v

′|v′ �G v}|

≤ 1
2 |Sa| +

1
2 |Sb| ≤

1
2 |Sdel| ≤

k
2 .

The k
2 -mean incentive compatibility immediately follows, and the n-agent incentive

compatibility is trivial. AVk satisfies strong monotonicity and minimal fairness, and
thus it is not(k

2 − ε)-mean incentive compatible, and not(k
2 − ε)-worst case incentive

compatible for allε > 0.
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To show thatAVk is not(n − 1)-agent incentive compatible over the set of graphs
with n vertices (n > 1), assume the full loop withn verticesG = (V, E) defined as
follows:

V = {0, . . . , n − 1}

E = {(i, i + 1 mod n), |i = 0 . . . n − 1}

Now, by removing all of its edges, each agent can improve its own relative rank by
1
2 , and thus alln agents have a deviation, and thusAV is not(n − 1)-agent incentive
compatible.

We now define the PageRank matrix which is the matrix which captures the random
walk created by the PageRank procedure. Namely, in this process we start in a random
page, and iteratively move to one of the pages that are linkedto by the current page,
assigning equal probabilities to each such page.

Definition 3.4. LetG = (V, E) be a directed graph, and assumeV = {v1, v2, . . . , vn}.
ThePageRank MatrixAG (of dimensionn × n) is defined as:

[AG]i,j =

{

1/|SG(vj)| (vj , vi) ∈ E

0 Otherwise.

The PageRank procedure will rank pages according to the stationary probability
distribution obtained in the limit of the above random walk;this is formally defined as
follows:

Definition 3.5. Let G = (V, E) be some strongly connected graph, and assumeV =
{v1, v2, . . . , vn}. Let 0 < d < 1 be adamping factor. Let ~r be the unique solution
of the system(1 − d) · AG · ~r + d · ( 1 1 · · · 1 )T = ~r where

∑

ri = n. The
PageRankPRG(vi) of a vertexvi ∈ V is defined asPRG(vi) = ri. ThePageRank
ranking systemis a ranking system that for the vertex setV mapsG to �PR

G , where
�PR

G is defined as: for allvi, vj ∈ V : vi �PR
G vj if and only if PRG(vi) ≤ PRG(vj).

We will now quantify the incentive compatibility of the PageRank ranking system:

Proposition 3.6. The PageRank ranking systemPR with damping factord is not(n
2 −

2)-mean incentive compatible nor(n − 1)-agent incentive compatible on the set of
graphs withn vertices (n > 2) and out-degree1.

Proof. Consider the graphG = (V, E) whereV = {0, . . . , n− 1} andE = {(i, i + 1
mod n)|i = 0, . . . n − 1}. In this graphPR ranks all agents equally due to symmetry.
Let v ∈ V be some agent. Assume wlogv = n − 1 and letG′ = (V, E′) be defined
asE′ = E \ {(n − 1, 0)} ∪ {(n − 1, n − 2)}. Applying linear algebra, we conclude
thatPR ranks0 ≺ 1 ≺ · · · ≺ n − 3 ≺ n − 1 ≺ n − 2 in G′ and thusrPR

G′ (v) =
rPR
G′ (n − 1) = n − 1.5. However,rPR

G (v) = n
2 , and thusδPR

G (v) ≥ n−3
2 . This is

true for allv ∈ V , so we see thatPR is not (n
2 − 2)-mean incentive compatible nor

(n − 1)-agent incentive compatible for an arbitrary graphG with n vertices.

A similar lower bound showing deviations of magnitudeO(n) by all agents can be
shown for the Hubs&Authorities ranking system as presentedby Kleinberg (1999).
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4 Non-imposing Ranking Systems

Recall that non-imposing ranking systems are those that accommodate any strict order
on the vertices. We will now show that this requirement cannot be satisfied when
requiring full incentive compatibility.

Fact 4.1. There exists no non-imposing incentive compatible rankingsystem.

Proof. Assume the vertex setV = {v1, v2}. There are two potential edges in this graph
e1 = (v1, v2) ande2 = (v2, v1). Let G = (V, E) be a graph s.t.v1 ≺G v2 and letG′

be a graph s.t.v2 ≺G′ v1. AsrG′(v1) 6= rG(v1) andrG(v2) 6= rG′(v2), from incentive
compatibility, the symmetric differenceE⊕E′ = (E∪E′)\ (E ∩E′) = {e1, e2}. Let
E′′ = E⊕{e1} = E′⊕{e2}. From incentive compatibilityrG′′ (v1) = rG(v1) = 1

2 =
rG′(v2) = rG′′(v2), but this cannot be as ifv1 ≃G′′ v2, rG′′(v1) = rG′′(v1) = 1.

We will now show a 1-worst case incentive compatible rankingsystem satisfying
non-imposition. This ranking system is also 1-agent incentive compatible, which sets
a tight bound.

Theorem 4.2. There exists a ranking systemF that satisfies non-imposition,1-worst
case incentive compatibility,1

n
-mean incentive compatibility on graphs withn vertices,

1-agent incentive compatibility, and weak positive response.

Proof. The ranking systemF is defined as follows: Assume a graphG = (V, E) with
V = {v1, v2, . . . , vn}. For eachv 6= v1 we define

p(v) =

{

|P (v) \ S(v1)| + n v ∈ S(v1)

|P (v) ∩ S(v1)| v /∈ S(v1)
.

Now we define a strict ordering�∗ onV \ {v1}:

vi �
∗ vj ⇔ [p(vi) < p(vj)] ∨

∨[p(vi) = p(vj) ∧ i ≤ j].

Given this ordering we can finally define�F
G:

vi �
F
G vj ⇔ (i 6= 1 ∧ j 6= 1 ∧ vi �

∗ vj) ∨

∨(i = 1 ∧ |{u|u �∗ vj}| ≥ |P (v1)|) ∨

∨(j = 1 ∧ |{u|u �∗ vi}| < |P (v1)|).

The weak positive response property is satisfied because addition of an edge(u, v)
either weakly increasesp(v) if v 6= v1, increasing the relative rank ofv, or increases
|P (v1)| if v = v1, and thus again increases the relative rank ofv.

To proveF satisfies non-imposition, assume a vertex setV = {v1, . . . , vn} and
strict ordering�′ on V . Let u1, u2, . . . , un−1 be the vertices inV \ {v1} ordered
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according to�′ and letk = |{v ∈ V : v �′ v1}|. LetG = (V, E) be the graph defined
as follows:

E = {(v1, ui)|i > n−1
2 } ∪ {(ui, v1)|i < k} ∪

{(ui, uj)|
n−1

2 < i < j − 1 + n
2 } ∪

{(ui, uj)|i < j − n−1
2 }.

First note that for allui ∈ V \ {v1}:

p(ui) =

{

i +
⌊

n
2

⌋

i > n−1
2

i − 1 Otherwise

Thus,u1 ≺∗ u2 ≺∗ · · · ≺∗ un−1. As |P (v1)| = k − 1, u1 ≺F
G · · · ≺F

G uk−1 ≺F
G

v1 ≺F
G uk ≺F

G · · · ≺F
G un−1, and thus�F

G≡�′, as required.
We will now prove the incentive compatibility features of this ranking system. Let

G = (V, E) be some graph. Note that both�∗ and�F
G are strict orderings. The

deviation magnitude of agentv1 is 0, as its rank is dependent only on its in-degree,
which it cannot manipulate:

δF
G(v1) = max{rF

(V,E′)(v) − rF
G(v)} =

= max{(|P(V,E′)(v1)| +
1
2 ) − (|PG(v1)| +

1
2 )} =

= max{|PG(v1)| − |PG(v1)|} = 0.

Let vi ∈ V \ {v1} be an agent. The rankrF
G(vi) is:

rF
G(vj) = 1

2

∣

∣{v′ : v′ ≺F
G vi}

∣

∣ + 1
2

∣

∣{v′ : v′ �F
G vi}

∣

∣ =

=
∣

∣{v′ : v′ ≺F
G vi}

∣

∣ + 1
2 =

=

{

|{v′ : v′ ≺∗ vi}| + 1.5 |{v′|v′ �∗ vi}| ≥ |P (v1)|

|{v′ : v′ ≺∗ vi}| +
1
2 Otherwise.

Now, |{v′ : v′ ≺∗ vi}| is independent of the outgoing edges ofvi given S(v1), as
vi ∈ S(v1) iff its outgoing edges are used to rank agents/∈ S(v1). Thus, the only
manipulationvi might do is to change|P (v1)|, and thus increase its rank by 1. In
order to increase its rank,vi must decrease|P (v1)|. vi can do so by at most 1,
by removing an edge(vi, v1) if it exists. This manipulation can only be done if
|{v′|v′ �∗ vi}| = |PG(v1)|. As �∗ is strict and0 ≤ |PG(v1)| ≤ n − 1, there ex-
ists exactly one agentvi satisfying this condition.

Thus, for somevi ∈ V : δF
G(vi) ≤ 1, and for allvj ∈ V \ {vi}: δF

G(vi) = 0. So we
conclude thatF is 1-worst case incentive compatible,1

n
-mean incentive compatible on

graphs withn vertices, and1-agent incentive compatible.

4.1 A Fully Incentive Compatible Non-imposing Ranking System
for 3 Agents

We have previously shown that there exists no general incentive compatible non-imposing
ranking system. However, if we limit our domain we may find that there exist such
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v0 → v1 v0 → v2

v2 → v0 v1 → v2 ≃ v1 ≺ v0 ≺ v2

v1 → v0 v2 ≺ v1 ≺ v0 v1 ≺ v2 ≺ v0

v2 → v1 v1 → v2 v0 ≺ v2 ≺ v1 v0 ≺ v1 ≺ v2

v1 → v0 v2 ≺ v0 ≺ v1 ≃

Figure 1: Schematic representation of the three-pluralityranking systems

ranking systems. In this section, we will provide a full axiomatization for non-imposing
incentive compatible ranking systems when there are exactly three agents.

Definition 4.3. A ranking system is calledthree-plurality if for every graphG =
(V, E) such that|V | = 3 there exists an orderingv0, v1, v2 of the vertices inV such
thatF ranksu � v ⇔ f(u) ≤ f(v), wheref(v) is one of the following:

f1(vi) = I [(vi−1, vi) ∈ E] + I [(vi+1, vi−1) /∈ E]

f2(vi) = I [(vi−1, vi) ∈ E ∧ (vi−1, vi+1) /∈ E] +

+I [(vi+1, vi) ∈ E ∨ (vi+1, vi−1) /∈ E] ,

where all the indices are calculated modulo 3, andI is the indicator function.

There are exactly four three-plurality ranking systems forgraphs withV = {v0, v1, v2}.
These ranking systems all implement plurality voting when each agent must vote, as
illustrated in Figure 1, and differ in the interpretation ofthe cases where agents cast no
votes or both votes.

Theorem 4.4. Let F be a ranking system over the set of graphs with 3 vertices.F
is three-plurality iff it satisfies all of the following criteria: incentive compatibility,
non-imposition, weak positive response, and minimal fairness.

Furthermore, these conditions are independent.

Proof. We must first show that any three-plurality ranking systemF satisfies these four
criteria. Incentive compatibility and non-imposition caneasily be deduced from Figure
1. To show thatF satisfies weak positive response, note that any added edge(vi, vj)
may only increasef(vj) and decreasef(vk) for k 6= j, thus satisfying weak positive
response. Minimal fairness is also satisfied by noticing thesymmetry in the definitions
of f1, f2.

Now we need to prove that any ranking systemF satisfying the four criteria is
three-plurality. By non-imposition, there exist graphsG1, G2, G3 such that:v0 ≺F

G1

v1 ≺F
G1

v2, v2 ≺F
G2

v0 ≺F
G2

v1, andv1 ≺F
G3

v2 ≺F
G3

v0. The set of allowable strategies
for agentvi for i ∈ {0, 1, 2} is {si

1, s
i
2, s

i
3, s

i
4} = ℘(V \ {vi}). We can use strategy

vectors of the form(s0
i , s

1
j , s

2
k) to represent the graph(V, s0

i ∪ s1
j ∪ s2

k).
Let ~s1, ~s2, ~s3 be the strategy vectors representingG1, G2, G3 respectively. By in-

centive compatibility,~s1 and~s2 differ by the strategies of at least 2 agents. Assume that
s0
1 6= s0

2 ∧ s1
1 6= s1

2 ∧ s2
1 6= s2

2. By IC, in the graph(s0
2, s

1
1, s

2
1): r(v0) = 0.5 and in the

graph(s0
2, s

1
1, s

2
2): r(v1) = 2.5. As these two graphs differ only in the outgoing edges

10



of v2, its rank must be equal, thus must ber(v2) = 1.5 in both. Therefore, in both
(s0

2, s
1
1, s

2
1) and(s0

2, s
1
1, s

2
2), F ranksv0 ≺ v2 ≺ v1. Again from IC, graph(s0

2, s
1
2, s

2
1)

must be rankedv2 ≺ v0 ≺ v1 and(s0
1, s

1
1, s

2
2) must be rankedv0 ≺ v1 ≺ v2 . We can

now letG2 = (s0
2, s

1
2, s

2
1), and thus differ fromG1 by the strategies of only two agents.

It is easy to see we can always chooseG2 such thatG1 and G2 only differ in
the strategies ofv0 andv1. Similarly, G3 can be chosen such thatG1 andG3 differ
only by the strategies ofv1 and v2. Assume now thats1

3 6= s1
2. By IC, in graph

(s0
1, s

1
3, s

2
1): r(v2) = r(v1) = 1.5 and thusv0 ≃ v1 ≃ v2. Now, in graph(s0

1, s
1
2, s

2
1):

r(v0) = r(v1) = 1.5 and thusv0 ≃ v1 ≃ v2. Now, in graph(s0
1, s

1
2, s

2
3): r(v1) = 0.5

andr(v2) = 1.5, sov1 ≺ v2 ≺ v0. We now letG3 = (s0
1, s

1
2, s

2
3) and thus now every

pair of graphs fromG1, G2, G3 differ by strategies of two agents. After renaming
strategies, we get a structure isomorphic to the one described in Figure 1, but without
any mapping between the names of the strategies and acutal edge selection by the
agents.

We will first show that the additional strategies of the agents simply reflect these
existing strategies. In(s0

3, s
1
1, s

2
1), by IC, r(v0) = 1.5. So assume thatF ranks

v2 ≺ v0 ≺ v1. However, in that case in(s0
3, s

1
2, s

2
1), r(v1) = r(v0) = 2.5, which

is impossible. However, in the two remaining cases it is easyto see thats0
3 reflectss0

1

or s0
2. The same is true for all other agents. Therefore, we only need to map the four

strategies for each agent to one of the two options for that agent.
Note that agentv2 is strengthened when agentv0 switches froms0

1 to s0
2 and agent

v1 is weakened. AssumeS(v0) = {v1} maps tos0
2, then by weak positive response,

S(v0) = {v1, v2} andS(v0) = ∅ must also map tos0
2, and furthermore thenS(v0) =

{v2} must also map tos0
2, in contradiction to the fact thats0

1 must be playable (by
non-imposition). Similarly, in all cases where|S(v)| = 1, S(v) maps to the relevant
strategy in Figure 1.

By minimal fairness, whenE = ∅, the strategy profile must be(s0
1, s

1
1, s

2
1) or

(s0
2, s

1
2, s

2
2), thus if S(v0) = ∅ maps to a strategys0

i , thenS(v1) = ∅ andS(v2) = ∅
must map to strategiess1

i ands2
i respectively. The same goes forS(v0) = {v1, v2) —

if it maps to a strategys0
i , thenS(v1) = {v0, v2} andS(v2) = {v0, v1} must map to

strategiess1
i ands2

i respectively.
So, we are left with four mapping options:

• S(v0) = ∅ maps tos0
2 andS(v0) = {v1, v2} maps tos0

1 .

• S(v0) = ∅ maps tos0
1 andS(v0) = {v1, v2} maps tos0

2 .

• S(v0) = ∅ andS(v0) = {v1, v2} both map tos0
2 .

• S(v0) = ∅ andS(v0) = {v1, v2} both map tos0
1 .

These mapping options exactly correspond to the four three-plurality ranking systems
— The first two correspond tof1, and the second two tof2. Of each pair, the first
corresponds to the orderingv0, v1, v2 and the second corresponds tov0, v2, v1.

We have shown any ranking system satisfying the four conditions must be three-
plurality.

To show that the conditions are independent we must show different ranking sys-
tems satisfying all conditions except one:
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• Incentive compatibility — The approval voting ranking system satisfies all afore-
mentioned conditions except incentive compatibility.

• Non-imposition — The trivial ranking system that always ranks all vertices equally
satisfies IC, weak positive response and minimal fairness.

• Weak positive response — We can swap the meanings ofsi
1 andsi

2 for all agents
and get a ranking system satisfying all conditions except weak positive response.

• Minimal fairness — If we do not assume minimal fairness, we can assign the
strategies forS(v) = ∅ andS(v) = V \ {v} differently for each agentv.
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