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a b s t r a c t

Consider the unit circle S1 with distance function d measured along the circle. We show
that for every selection of 2n points x1, . . . , xn, y1, . . . , yn ∈ S1 there exists i ∈ {1, . . . , n}
such that

∑n
k=1 d(xi, xk) ≤

∑n
k=1 d(xi, yk). We also discuss a game theoretic interpretation

of this result.
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let x1, . . . , xn, y1, . . . , yn ∈ R, and denote N = {1, . . . , n}. We claim that there exists i ∈ N such that−
k∈N

|xi − xk| ≤

−
k∈N

|xi − yk|. (1)

To see this, assume without loss of generality that x1 ≤ x2 ≤ · · · ≤ xn. For every k ∈ N
|x1 − xk| + |xn − xk| = |x1 − xn| ≤ |x1 − yk| + |xn − yk|,

and by summing over all k ∈ N we get−
k∈N

|x1 − xk| +

−
k∈N

|xn − xk| ≤

−
k∈N

|x1 − yk| +

−
k∈N

|xn − yk|.

It immediately follows that (1) holds with respect to i = 1 or i = n, that is, with respect to one of the extreme points.
Next, let x1, . . . , xn, y1, . . . , yn ∈ S1, where S1 is the unit circle. Let d : S1 × S1 → R+ be the distance on S1, i.e., the

distance between two points is the length of the shorter arc between them. If x1, . . . , xn cannot be placed on one semicircle
then there are no longer points that can easily be identified as ‘‘extreme’’. Is it still true that there exists i ∈ N such that−

k∈N

d(xi, xk) ≤

−
k∈N

d(xi, yk)?

Put another way, if n people walk on a circle from the starting points x1, . . . , xn to the destination points y1, . . . , yn
respectively, is it true that they cannot jointly move closer (in terms of the sum of distances) to every starting point?
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Fig. 1. An illustration of the construction in the proof of Theorem 1, for n = 4. The nearly antipodal pairs are A = {{x1, x3}, {x2, x4}, {x3, x4}}.

In Section 2 we answer this question in the affirmative. Although our main result is formulated with respect to S1, it
clearly also holds for any closed curve that is homeomorphic to S1. On the other hand it is easy to see that it does not hold
for any graph embedded in the plane that contains a vertex v of degree at least 3. This is shown by taking n = 3 and
letting x1, x2 and x3 be three points that lie on different edges incident with v, each being of equal distance from v, with
y1 = y2 = y3 = v. In Section 3 we briefly discuss a game theoretic implication of this result.

2. Main theorem

We first introduce some notations. Let x, y ∈ S1; we denote the shorter open arc between x and y by (x, y), and the
shorter closed arc between x and y by [x, y].2 For every x ∈ S1 we let x̂ be the antipodal point of x on S1, i.e., the diametrically
opposite point. Finally, given x, y ∈ S1 we denote the ‘‘clockwise operator’’ by ≽, and its strong version by ≻. Without being
very formal, x ≽ y means that x is clockwise from y on the circle; this operator is well defined in the context of an arc of
length less than π .

We are now ready to formulate and prove our main result.

Theorem 1. Let x1, . . . , xn, y1, . . . , yn ∈ S1. Then there exists i ∈ N such that−
k∈N

d(xi, xk) ≤

−
k∈N

d(xi, yk). (2)

Proof. Let x1, . . . , xn ∈ S1, and define a multiset X by X = {x1, . . . , xn}. We first note that we can assume that there are no
xi, xj ∈ X such that xj = x̂i. Indeed, in this case the claim holds trivially with respect to either i or j, since for all z ∈ S1,

d(xi, z) + d(xj, z) = π.

In particular, for every xi, xj ∈ X, (xi, xj) and (x̂i, x̂j) are well-defined.
We say that two points xi, xj ∈ X are nearly antipodal if there is no point xk ∈ X such that xk ∈ (xi, x̂j) or xk ∈ (xj, x̂i). Let

A be the set of all unordered pairs of nearly antipodal points. Given a nearly antipodal pair {xi, xj} ∈ A, let the critical arc of
{xi, xj}, denoted crit(xi, xj), be the long open arc between x̂i and x̂j, that is,

crit(xi, xj) = S1 \ [x̂i, x̂j] = (xi, x̂j) ∪ [xi, xj] ∪ (xj, x̂i).

See Fig. 1 for an illustration of the construction given above.
Let y1, . . . , yn ∈ S1, and define a multiset Y by Y = {y1, . . . , yn}. It is sufficient to prove that there exists a pair of nearly

antipodal points {xi, xj} ∈ A such that−
k∈N

d(xi, xk) +

−
k∈N

d(xj, xk) ≤

−
k∈N

d(xi, yk) +

−
k∈N

d(xj, yk).

Indeed, in this casewe get that Eq. (2) holds with respect to either xi or xj. Therefore, assume for the purpose of contradiction
that for every pair of nearly antipodal points {xi, xj} ∈ A,−

k∈N

d(xi, xk) +

−
k∈N

d(xj, xk) >
−
k∈N

d(xi, yk) +

−
k∈N

d(xj, yk). (3)

We claim that Eq. (3) implies that for every pair of nearly antipodal points {xi, xj} ∈ A, the number of points from Y on
crit(xi, xj) is strictly greater than the number of points from X on the same arc. Formally, for {xi, xj} ∈ A, let

αX
ij = |{xk ∈ X : xk ∈ crit(xi, xj)}|,

2 If x and y are antipodal then these arcs are ambiguously defined.
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and

αY
ij = |{yk ∈ Y : yk ∈ crit(xi, xj)}|.

We have the following claim.

Lemma 1. Let {xi, xj} ∈ A. Then αY
ij > αX

ij .

Proof. For every point z ∈ [xi, xj], we have that

d(xi, z) + d(xj, z) = d(xi, xj).

Let d′(xi, xj) be the length of the longer arc S1 \ [xi, xj] between xi and xj, namely

d′(xi, xj) = d(xi, x̂j) + d(x̂j, x̂i) + d(x̂i, xj) = d(xi, xj) + 2 · d(xi, x̂j) > d(xi, xj).

For every point z ∈ [x̂i, x̂j] it holds that

d(xi, z) + d(xj, z) = d′(xi, xj).

Finally, it holds that for every z ∈ (xi, x̂j) ∪ (xj, x̂i),

d(xi, xj) < d(xi, z) + d(xj, z) < d′(xi, xj).

Since xi and xj are nearly antipodal, there are no points from X in (xi, x̂j) and (xj, x̂i). Therefore,−
k∈N

d(xi, xk) +

−
k∈N

d(xj, xk) = αX
ij · d(xi, xj) + (n − αX

ij ) · d′(xi, xj). (4)

On the other hand,−
k∈N

d(xi, yk) +

−
k∈N

d(xj, yk) ≥ αY
ij · d(xi, xj) + (n − αY

ij ) · d′(xi, xj). (5)

Using Eqs. (4) and (5), we get that (3) directly implies that αY
ij > αX

ij , as claimed. �

From Lemma 1, we immediately get that−
{xi,xj}∈A

αX
ij <

−
{xi,xj}∈A

αY
ij . (6)

In order to derive a contradiction, we also need the following lemma.

Lemma 2. There exists r ∈ N such that−
{xi,xj}∈A

αX
ij = r · n, (7)

whereas−
{xi,xj}∈A

αY
ij ≤ r · n. (8)

Proof. It is easy to see that |A| is odd (e.g., by induction on n); let |A| = 2s + 1, for some s ∈ N. We first wish to claim that
every xi ∈ X is a member of exactly s + 1 critical arcs, which directly proves Eq. (7) with r = s + 1.

Without loss of generality we prove the claim with respect to x1 ∈ X . Consider the clockwise closed arc between x1 and
x̂1. Let Z = {z1, . . . , zt} be all the points xi or x̂i on this arc, where for all k, zk+1 ≽ zk. In particular, z1 = x1 and zt = x̂1. For
instance, in Fig. 1 we have that Z = {x1, x2, x̂4, x3, x̂1}.

Now, we have that the set of nearly antipodal pairs A is exactly the set of pairs {xi, xj} such that zk is a point xi and zk+1 is
an antipodal point x̂j (this is a type 1 nearly antipodal pair), or zk is an antipodal point x̂i and zk+1 is a point xj (this is a type
2 nearly antipodal pair). If {xi, xj} is a nearly antipodal pair of type 1, we have that x1 ∈ [xi, xj], and hence x1 ∈ crit(xi, xj).
On the other hand, if {xi, xj} is a nearly antipodal pair of type 2, then x1 ∉ crit(xi, xj). Since z1 = x1 is a point from X and
xn+1 = x̂1 is an antipodal point, the number of nearly antipodal pairs of type 1 is exactly s + 1, which proves the claim.

In order to prove Eq. (8), let y ∈ S1. It is sufficient to prove that there exists xi ∈ X such that y appears in at most as many
critical arcs as xi, since we already know that xi is a member of exactly s + 1 critical arcs. We consider the two points or
antipodal points that are adjacent to y, and briefly examine four cases.

1. xi ≼ y ≼ xj: y appears in exactly the critical arcs that contain xi (these are also exactly the critical arcs that contain xj).
2. xi ≼ y ≺ x̂j: y appears in exactly the critical arcs that contain xi.
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3. x̂i ≺ y ≼ xj: y appears in exactly the critical arcs that contain xj.
4. x̂i ≼ y ≼ x̂j: When walking counterclockwise from x̂i, let xk ∈ X be the first point from X , and let x̂l be the last antipodal

point such that xk ≺ x̂l ≼ x̂i. Then y is contained in exactly the critical arcs that contain xk, except for crit(xk, xl), that is,
in exactly s critical arcs.

We deduce that every yi is contained in at most r = s + 1 critical arcs, which implies the validity of Eq. (8). �

It follows from Lemma 2 that−
{xi,xj}∈A

αX
ij ≥

−
{xi,xj}∈A

αY
ij ,

in contradiction to Eq. (6). �

3. A game theoretic interpretation

Consider a facility location setting where the facility is to be located on a network. Each player i ∈ N has an ideal location
for the facility on the network; the player’s cost is the distance between its ideal location and the location that was selected
for the facility. A mechanism is a function that receives the reported ideal locations of the players as input, and returns the
location of the facility.

From the game theoretic point of view it is desirable that mechanisms be immune to manipulation by rational players.
A mechanism is strategyproof if players can never benefit by misreporting their ideal location, regardless of the reports of
the other players. In other words, by misreporting his location a player cannot influence the facility location in a way that
it becomes closer to his ideal location. Schummer and Vohra [2] establish a characterization of deterministic strategyproof
facility location mechanisms on networks. In particular, they show that if the network is a circle then the only deterministic
strategyproof and onto mechanism is a dictatorship of one of the players, i.e., given any constellation of ideal locations the
mechanism selects the ideal location of a fixed player.

Randomization provides a way around this negative result. Indeed, under the random dictator mechanism the ideal
location of one of the agents is selected uniformly at random. This mechanism is strategyproof: if an agent was chosen
as the dictator then it could not have gained from lying, whereas if it was not chosen then it could not have affected the
outcome. Random dictator is also ‘‘fair’’ compared to a deterministic dictatorship, and in particular produces an outcome
that yields a good approximation to the optimal facility location in terms of minimizing the sum of players’ costs.3

Taking our game theoretic requirements a step further, we say that amechanism is group strategyproof if even a coalition
of agents cannot all benefit by lying, that is, for every joint deviation by a coalition there is a member of the coalition whose
expected distance from the facility does not decrease. Group strategyproofness is a highly desirable property, but is rarely
satisfied by nontrivial mechanisms. We can derive the following result as an immediate corollary of Theorem 1.

Corollary 1. Assume that the network is a circle. Then the random dictator mechanism is group strategyproof.

To see this, note that we can assume without loss of generality that the deviating coalition contains all the players.
Indeed, the expected cost of a player given that a nondeviating player is selected by the mechanism, and the probability
that a nondeviating player is selected by the mechanism, are both independent of the reports of the deviating players. The
corollary follows after scaling by a factor of 1/n. For more details, including the formal facility location model, the reader is
referred to [1].
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