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ABSTRACT

Ranking systems are a fundamental ingredient of multi-agent
environments and Internet Technologies. These settings can
be viewed as social choice settings with two distinguished
properties: the set of agents and the set of alternatives co-
incide, and the agents’ preferences are dichotomous, and
therefore classical impossibility results do not apply. In this
paper we initiate the study of incentives in ranking systems,
where agents act in order to maximize their position in the
ranking, rather than to obtain a correct outcome. We con-
sider several basic properties of ranking systems, and fully
characterize the conditions under which incentive compati-
ble ranking systems exist, demonstrating that in general no
such system satisfying all the properties exists.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics|: Graph Theory; J.4 [Social

and Behavioral Sciences]: Economics; H.3.3 [Information

Storage and Retrieval]: Information Search and Retrieval

General Terms

Algorithms, Economics, Human Factors, Theory

Keywords

Ranking systems, multi-agent systems, incentives, social choice

1. INTRODUCTION

The ranking of agents based on other agents’ input is fun-
damental to multi-agent systems (see e.g. [14]). Moreover,
it has become a central ingredient of a variety of Internet
sites, where perhaps the most famous examples are Google’s
PageRank algorithm[11] and eBay’s reputation system[13].

The ranking systems setting can be viewed as a variation
of the classical theory of social choice[4], where the set of
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agents and the set of alternatives coincide. Specifically, we
consider dichotomous ranking systems, in which the agents
vote for a subset of the rest of the agents. This is a natural
representation of the web page ranking setting[17], where the
Internet pages are represented by the agents/alternatives,
and the links are represented by votes.

Some basic work targeted at the foundations of ranking
systems has been recently initiated. In particular, basic
properties of ranking systems have been shown to be im-
possible to simultaneously accommodate[l], various known
ranking systems have been recently compared with regard
to certain criteria by [5], and several ranking rules have been
axiomatized [2, 12, 16].

Although the above mentioned work consists of a sig-
nificant body of rigorous research on ranking systems, the
study did not consider the effects of the agents’ incentives
on ranking systems'. The issue of incentives has been exten-
sively studied in the classical social choice literature. The
Gibbard—Satterthwaite theorem [9, 15] shows that in the
classical social welfare setting, it is impossible to aggregate
the rankings in a strategy-proof fashion under some basic
conditions. The incentives of the candidates themselves were
considered in the context of elections[8], where a related im-
possibility result is presented. Another notion of incentives
was considered in the case where a single agent may cre-
ate duplicates of itself[7]. Furthermore, the computation of
equilibira in the more abstract context of ranking games was
also discussed[6].

In this paper we initiate research on the issue of incentives
in ranking systems. We define two notions of incentive com-
patibility, where the agent is concerned with its expected
position in the ranking under affine or general utility func-
tions.

We then consider some very basic properties of ranking
systems, which are satisfied by almost all known ranking
systems, and prove that these properties cannot be all sat-
isfied by an incentive compatible ranking system. This find-
ing is far from trivial, as different ranking systems may re-
quire different manipulations by an agent in order to increase
its rank in different situations. Furthermore, we show that
when we assume only a subset of the basic properties, some
artificial incentive compatible ranking systems can be con-
structed. Together, these results form a complete character-
ization of incentive compatible ranking systems under these

YA recent work on quantifying incentive compatbility of
ranking systems[3] was based on a preliminary version of
this paper.



basic properties.

Our results expose some surprising and illuminating ef-
fects of some basic properties one may require a ranking
system to satisfy on the existence of incentive compatible
ranking systems.

This paper is structured as follows: In Section 2 we for-
mally introduce the notion of ranking systems and in Sec-
tion 3 we define some basic properties of ranking systems.
In Section 4 we introduce our two notions of incentive com-
patibility. We then show a strong possibility result in Sec-
tion 5, when we do not assume the minimal fairness prop-
erty. In Section 6 we provide a full classification of the ex-
istence of incentive compatible ranking systems when we do
assume minimal fairness. Section 7 provides some illumi-
nating lessons learned from this classification. Finally, in
Section 8 we introduce the isomorphism property and rec-
ommend further research with regard to the classification of
incentive compatibility under isomorphism.

2. RANKING SYSTEMS

Before describing our results regarding ranking systems,
we must first formally define what we mean by the words
“ranking system” in terms of graphs and linear orderings:

DEFINITION 1. Let A be some set. A relation R C A x A
is called an ordering on A if it is reflerive, transitive, and
complete. Let L(A) denote the set of orderings on A.

NoTATION 1. Let <X be an ordering, then =~ is the equal-
ity predicate of =, and < is the strict order induced by <.
Formally, a >~ b if and only if a < b and b < a; and a < b if
and only if a X b but not b < a.

Given the above we can define what a ranking system is:

DEFINITION 2. Let Gv be the set of all directed graphs
on a vertezx set V that do not include self edges®. A ranking
system F' is a functional that for every finite vertex set V'
maps graphs G € Gy to an ordering <&€ L(V).

One can view this setting as a variation/extension of the
classical theory of social choice as modeled by [4]. The rank-
ing systems setting differs in two main properties. First, in
this setting we assume that the set of voters and the set
of alternatives coincide, and second, we allow agents only
two levels of preference over the alternatives, as opposed to
Arrow’s setting where agents could rank alternatives arbi-
trarily.

3. BASIC PROPERTIES OF RANKING SYS-
TEMS

In order to classify the incentive compatibility features
of ranking systems, we must first define the criteria for the
classification. We define some very basic properties that
are satisfied by almost all known ranking systems. Most
properties have two versions — one weak and one strong,
both satisfied by almost all known ranking systems.

First of all, we define the notion of a trivial ranking sys-
tem, which ranks any two vertices the same way in all graphs.

20ur results are still correct when allowing self-edges, but
for the simplicity of the exposition we assume none exist.

DEFINITION 3. A ranking system I is called trivial if for
all vertices v1,va and for all graphs G, G" which include these
vertices: v1 jg vy & U1 jg, ve. A ranking system F is
called nontrivial if it is not trivial.

A ranking system F' is called infinitely nontrivial if there
exist vertices vi,v2 such that for all N € N there exists n >
N and graphs G = (V,E) and G' = (V',E') s.t. |V| =
V| =n, v <& va, but va <§, V1.

A basic requirement from a ranking system is that when
there are no votes in the system, all agents must be ranked
equally. We call this requirement minimal fairness®.

DEFINITION 4. A ranking system F is minimally fair if
for every graph G = (V,0) with no edges, and for every
vi,v2 € Vi :g V2.

Another basic requirement from a ranking system is that as
agents gain additional votes, their rank must improve, or
at least not worsen. Surprisingly, this vague notion can be
formalized in (at least) two distinct ways: the monotonic-
ity property considers the situation where one agent has a
superset of the votes another has in the same graph, while
the positive response property considers the addition of a
vote for an agent between graphs. This distinction is impor-
tant because, as we will see, the two properties are neither
equivalent, nor imply each other.

NOTATION 2. Let G = (V, E) be a graph, and letv € V be
a vertez. The predecessor set of v is Pa(v) = {v'|(v',v) €
E}. The successor set of v is Sq(v) = {v'|(v,v") € E}.
We may omit the subscript G when it is understood from
contet.

DEFINITION 5. Let F be a ranking system. F satisfies
weak positive response if for all graphs G = (V, E) and for
all (vi,v2) € (VX V)\ E, and for all vs € V' \ {va}: Let
G = (V,EU (vi,v2)). Then, vs =& vo implies v3 jg/ Vo
and v3 <§ va implies vs <£, ve. F furthermore satisfies
strong positive response if vs <& v implies vz <& va.

DEFINITION 6. A ranking system F' satisfies weak mono-
tonicity if for all G = (V,E) and for all vi,ve € V: If
P(vi) C P(v2) then v 55 va. F furthermore satisfies
strong monotonicity if P(vi) € P(v2) additionally implies
V1 -<g V3.

ExAMPLE 1. Consider the graphs G1 and G2 in Figure
1. Further assume a ranking system F ranks a zgl d in
graph G1. Then, if F satisfies weak positive response, it
must also rank a 522 d in Ga. If F satisfies the strong
positive response, then it must strictly rank a <§2 d in Gs.
Howewver, if we do not assume a jgl d, F may rank a and
d arbitrarily in Ga.

Now consider the graph G1, and note that P(a) = {c} C
{¢,d} = P(b). This is the requirement of the weak (and
strong) monotonicity property, and thus any ranking system
I that satisfies weak monotonicity must rank a 551 b, and it
is satisfies strong momnotonicity, it must strictly rank a <£1
b.

3A stronger notion of fairness, the isomorphism property,
will be considered in Section 8.
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Figure 1: Example graphs for the basic properties
of ranking systems

Note that the weak monotonicity property implies minimal
fairness. This is due to the fact that when no votes are cast,
all vertices have exactly the same predecessor sets and thus
must be ranked equally.

Yet another simple requirement from a ranking system is
that it does not behave arbitrarily differently when two sets
of agents with their respective votes are considered one set.

DEFINITION 7. Let F' be a ranking system and let G1 =
(Vi, E1) and G2 = (Va, E2) be graphs s.t. Vi NVo =0 and
let v1,v2 € Vi be two vertices. Let G UG2 = (V1 U V2, B3 U
Es). F satisfies the weak union condition if vy jgl vy &
v1 5£1UG2 vae. Let G' = (Vi U Vo, E1 U Ex U E), where
E C Vi x Vs isin an arbitrary set of edges from Vi to Vao. F
satisfies the strong union condition if vy 551 Vo & U1 jg,
V2.

Surprisingly, we will see that even the weak union condition
has great significance towards the existence of a ranking
system or lack thereof. One reason for this effect, is that
a ranking system satisfying this condition cannot behave
differently depending on the size of the graph.

3.1 Satisfiability

As we have mentioned above, these properties are very
basic and, with the exception of the strong union condition,
all the properties above are satisfied by almost all known
ranking systems such as the PageRank[11] ranking system
(with a damping factor) and the authority ranking by the
Hubs& Authorities algorithm[10]. These ranking systems do
not satisfy the strong union condition, as in both systems
outgoing links outside an agent’s strongly connected com-
ponent may affect ranks inside the strongly connected com-
ponent, either by dividing the importance (in PageRank) or
by affecting the hubbiness score in Hubs& Authorities.

Furthermore, the simple approval voting ranking system
satisfies all the strong properties mentioned above including
the strong union condition. The approval voting ranking
system can be defined as follows:

DEFINITION 8. The approval voting ranking system AV
is the ranking system defined by:

v XG" v2 & |P(v1)| < |P(v2)].

Fact 1. The approval voting ranking system AV satis-
fies minimal fairness, strong monotonicity, strong positive
response, the strong union condition, and infinite nontrivi-
ality.

These facts lead us to believe that the properties defined
above (perhaps with the exception of the strong union con-
dition), should all be satisfied by any reasonable ranking
system, at least in their weak form. We will soon show that
this is not possible when requiring incentive compatibility.

4. INCENTIVE COMPATIBILITY

Ranking systems do not exist in empty space. The results
given by ranking systems frequently have implications for
the agents being ranked, which are the same agents that are
involved in the ranking. Therefore, the incentives of these
agents should in many cases be taken into consideration.

In our approach, we require that our ranking system will
not rank agents better for stating untrue preferences, but
we assume that the agents are interested only in their own
ranking (and not, say, in the ranking of those they prefer).

We assume that for strict rankings (with no ties), for ev-
ery agent count n, there exists a utility function u, : N +— R
that maps an agent’s rank (i.e. the number of agents ranked
below it) to a utility value for being ranked that way. We as-
sume u,, is nondecreasing, that is every agent weakly prefers
to be ranked higher.

This utility function can be extended to the case of ties, by
treating these as a uniform randomization over the matching
stict orders. Thus the utility of an agent with k£ agents
strictly below it and m agents tied is

1 k+m—1
Efun] = us,(k,m) = — Z n (7).

We can now define the utility of a ranking for an agent as
follows:

DEFINITION 9. The utility u&(v) of a vertex v in graph
G = (V, E) under the ranking system F and utility function
u 18 defined as

ug&(v) = ufy ([{v" 0" <}, [{v" v ~0}]) =

1 |{ul:v,§u}|71

= — Un (7).

[{v'": v ~ v} Z n(9)
i=[{v’:v/ <v}|
This definition allows us to define a preference relation over
rankings for each agent. Using this preference relation, we
can now define the general notion of incentive compatiblity
as immunity of utility to manipulation of outgoing edges:

DEFINITION 10. Let F' be a ranking system. F' is called
incentive compatible under utility function w if for all graphs
G1 = (V,E1) and G2 = (V, E2) s.t. for some v € V, and
for allv' € V\{v}v" € V: (v',v") € B1 & (v',v") € Ea:
ug, (v) = ug, (v).

A strong notion of incentive compatibility is compatibility
under any utility function:

DEFINITION 11. Let F' be a ranking system. F satisfies
strong incentive compatibility if for any nondecreasing util-
ity function w: N x N— R, F' is incentive compatible under
U.

A simple utility function one may consider is the identity
function u, (k) = k. This basic utility function means that
any change in rank has the same significance. The utility of



Figure 2: Example graph for ranking system F'

a ranking with k weaker agents and m equal agents under
this function is:

1 k+m—1 m 1
ul(k,m)=— W(i) =k +——.
Ahym) = = 3 (i) =k
i=k
It turns out that the preference relation over rankings pro-
duced by the identity utility function is the same as the one
produced by any affine utility function u(k) = a -k + b, as
uy,(k,m) in this case is simply a - (k + 25%) + b. Therefore,
it is interesting to look at incentive compatibility under an
affine utility function wu:

DEFINITION 12. Let F' be a ranking system and let. F is
called weakly incentive compatible if for every utility func-
tion u : N X N +— R such that un(k) = a -k + b for some
constants a,b € R: F is incentive comaptible under u.

NoTATION 3. In order to prevent ambiguity, in the re-
mainder of this paper we will use r&(v) (“rank”) to denote
ué(v) under the utility function un(k) =k + 4. So that

re(v) = [{v" 10" < v} + % [{v" s v ~v}.

Note that due to the fact that all affine ranking functions
give the same ordering over uv* (k, m), we can, wlog, consider
only un (k) = k + % when proving weak incentive compatib-
lity or lack thereof.

Interestingly, we will see in the remainder of this paper
that these incentive compatibility properties are very hard
to satisfy, and no common nontrivial ranking system satisfies
them. In particular, the PageRank, Hubs& Authorities and
Approval Voting ranking systems mentioned above are not
weakly incentive compatible.

EXAMPLE 2. One may think that under positive response,
impossibility of weak incentive compatibility is a direct result
of an alleged dominant strategy not to vote for any agent.

However, this is not true, as sometimes the best response
does involve voting for some agent. Consider the ranking
system F' defined by:

v 3G v2 & [P(01)| + 1S (01)| < [P(v2)] + 1S (w2)].

This ranking system satisfies strong positive response, but is
not weakly incentive compatible. For example, in the graph
depicted in Figure 2, the agent a can improve its rank either
by not voting for b, or by wvoting for both r1 and x2. The
mazimal increase in a’s rank is achieved by doing both.

Note that under this ranking system, agents do not have a
dominant strategy that maximizes their rank, and thus there
is no general dominant deviation that demonstrates lack of
incentive compatibility.

5. POSSIBILITY WITHOUT MINIMAL FAIR-
NESS

To begin our classification of the existence of incentive
compatible ranking systems, we first consider ranking sys-
tems which do not satisfy minimal fairness. We have already
seen that minimal fairness is implied by weak monotonicity,
so we cannot hope to satisfy weak monotonicity without
minimal fairness. As it turns out, the strong versions of all
the remaining properties considered above can, in fact, be
satisfied simultaneously.

ProrosiTION 1. There exists a ranking system Fi that
satisfies strong incentive compatibility, strong positive re-
sponse, infinite nontriviality, and the strong union condi-
tion.

PROOF. Assume a lexicographic order < over vertex names,
and assume three consecutive vertices v1 < vy < vs. Then,
F1 is defined as follows (let G = (V, E) be some graph):

vEGu & [Sun(©F v Vut)V
[v=wv2 Au=uv3A (vi,v2) & E]V
[v=v3Au=wv2 A (v1,v2) € E].

That is, vertices are ranked strictly according to their lexico-
graphic order, except when (v1,v2) € E, whereas the ranking
of v2 and vs is reversed.

F1 is infinitely nontrivial because graphs with the vertices
v1, V2,03 are ranked differently depending on the existence of
the edge (v1,v2), and these exist for any |V| > 3.

F1 satisfies strong incentive compatibility because the only
vertex that can make any change in the ranking is vi and it
cannot ever change its own position in the ranking at all.

F satisfies strong positive response because the ordering of
the vertices remains unchanged by anything but the (v1,v2)
edge, and is always strict. The addition of the (vi,v2) edge
only increases the relative rank of va as required.

Assume for contradiction that F1 does not satisfy the strong
union condition. Then, there exist two disjoint graphs G1 =
(Vi, E1), Go = (Va, E2) and an edge set E C Vi X Va such
that the ranking jgl of graph G = (Vi U Vo, E1 U E2 U E)
s inconsistent with jgll First note that the only inconsis-
tency that may arise is with the ranking of va compared to
vz. Therefore, {va,vs} C Vi. Furthermore, for the ranking
to be inconsistent (vi,v2) ¢ F1 and (vi,v2) € E1 UE;UFE
(the opposite is impossible due to inclusion). Furthermore,
v € Vi = 12 ¢ Vo = (1)17’02) ¢ Vix Vo = (1)17’02) ¢ E.
Thus we conclude that (vi,v2) € Fa, and thus va € Va, in
contradiction to the fact that vo € V1. [

6. FULL CLASSIFICATION UNDER MINI-
MAL FAIRNESS

We are now ready to state our main results:

THEOREM 1. There exist weakly incentive compatible, in-
finitely nontrivial, minimally fair ranking systems Fo, F3, Fu
that satisfy weak monotonicity; weak positive response; and
the weak union condition repsectively. However, there is no
weakly incentive compatible, nontrivial, minimally fair rank-
ing system that satisfies any two of those three properties.

THEOREM 2. There is no weakly incentive compatible, non-
trivial, minimally fair ranking system that satisfies either



one the four properties: strong monotonicity, strong posi-
tive response, the strong union condition and strong incen-
tive compatibility.

The proof of these two theorems is split into ten different
cases that must be considered — three possibility proofs for
F>, F3. and F,, three impossibility results with pairs of
weak properties, and four impossibility results with each of
the strong properties. We will now prove each of these cases.

6.1 Possibility Proofs

PROPOSITION 2. There exists a weakly incentive compat-
ible ranking system F> that satisfies minimal fairness, weak
positive response, and infinite nontriviality.

PROOF. Let v1,v2,v3 be some vertices and let G = (V, E)
be some graph, then F» is defined as follows:

vu & [vEuvsAuFv]Vuo=uV
(U17U3)¢E\/U2¢V

That is, F> ranks all vertices equally, except when the edge
(v1,v3) exists. Then, F> ranks va < v ~ u < vz for all
v,u € V\ {v2,vs}.

F> satisfies minimal fairness because when no edges ezist,
the clause (v1,v3) ¢ E always matches, and thus all vertices
are ranked equally, as required. F> satisfies infinite non-
triviality, because for all |V| > 3 there exists a graph which
includes the vertices v1,v2,vs and the edge (v1,vs), which is
ranked nontrivially.

F> satisfies weak positive response because the only edge
addition that changes the ranks of the vertices in the graph
(the addition of (vi,v3)) indeed doesn’t weaken the target
vertexr vs.

F> is weakly incentive compatible because only vi can affect
the ranking of the vertices in the graph (by voting for vs or
not), but r(v1) is always % |

PROPOSITION 3. There exists a weakly incentive compat-
ible ranking system Fs3 that satisfies minimal fairness, the
weak union condition, and infinite nontriviality.

PROOF. Let v1,v2,v3 be some vertices and let G = (V, E)
be some graph, then Fs is defined as follows:

vu & [vEuvsAuFv]Vuo=uV
{(U17U2)7(U17U3)} g E.

That is, Fs ranks all vertices equally, except when the edges
(v1,v2), (v1,vs3) exist. Then, F3 ranks va < v ~ u < v for
all v,u € V \ {v2,v3}.

F3 satisfies minimal fairness because when no edges ex-
ist, the clause {(vi,v2),(v1,v3)} € E always matches, as
required. 3 satisfies infinite montriviality, because for all
V| > 3 there exists a graph which includes the vertices
v1,v2,v3 and the edges {(v1,v2), (v1,v3)}, which is ranked
nontrivially.

To prove F3 satisfies the weak union condition, let G1 =
(Vi, Ev) and G2 = (Va, E2) be some graphs such that Vi N
Vo = (Z), and let G = G1 UGs. If{(vl,vg), (1)1,1)3)} g Fi U
E> then by the definition of Fs, it must rank all vertices in
all graphs G1,G2, G equally, as required. Otherwise, for all
v,u € (Vi UVe) \ {va,vs}: v2 -<§3 v 223 u —<23 v3. Assume
wlog that (vi,v2) € E1 and thus vi,v2 € Vi. But then also
(v1,v3) € E1 and thus also v3 € V1. By the definition of

Figure 3: Nontrivially ranked graph for Fi

. F3 F3 F3
Fs, for all v,u € Vi \ {v2,v3}: v <& v g u <G vs.

As vi,v2,v3 & Ga, trivially for all v,u € Va: v :g?; u, as
required.
F3 is weakly incentive compatible because only vi (if at all)
can affect the ranking of the vertices in the graph (by voting
V]

for v2 and vz or not), but r(v1) is always 5. O

ProproSITION 4. There exists a weakly incentive compat-
ible ranking system Fy that satisfies minimal fairness, weak
monotonicity, and infinite nontriviality.

PROOF. The ranking system Fy ranks all vertices equally,
except for graphs G = (V,E) for which |V| > 7, where
V ={w,s,mo,...,mn-1}, and for all i € {0,...,n — 1}:
(mi,s) € E, (mij,w) ¢ E, and for all j € {0,...,n — 1}:
(mi,m;) € E if and only if j = (i +1) modn or j =
(14+2) mod n. Figure 8 includes an example graph that sat-
isfies these conditions. In such graphs, Fi ranks w <g4

Fy Fy Fy
my gt 2t e <G s,

Fy is minimally fair by definition, as when there are no
edges, all vertices are ranked equally. F4 satisfies infinite
nontriviality because such nontrivially ranked graphs G exist
for all |V| > 7.

Fy satisfies weak monotonicity because in the graphs that it
doesn’t rank all vertices equally we see that P(w) 2 P(m;) 2
P(s) for all i € {0,...n — 1}, which is consistent with the
ordering Fa specifies.

To prove Fy is weakly incentive compatible, we let G1, G2
be two graphs that differ only in the outgoing edges of a single
vertez v, and show that rg‘i (v) = 7542 (v). Because all graphs
in which not all vertices are ranked equally are of the form
defined above, at least one of the graphs G1, G2 must have
this form. Let us assume wlog that this graph is G1, and
mark the vertices of this graph as defined above.

Now consider two cases:



1. If v = w or v = s, then by the definition of Fu,
jg‘i Ejg‘; , thus trivially, rg‘i (v) = rg‘; (v), as required.

2. If v =m; for some i € {0,...,n — 1}, then first note
that rg‘i (v) = % If G2 is not of the form defined
above then all its vertices are ranked equally and specif-

ically rg42 = %, as required. Otherwise, G2 is of the
form defined above. Let w' and s’ be the w and s ver-
tices for G2 in the form defined above. By the def-
inition, 2 < |Pay (v)| < 4, while |Pg,(w")] < 1 and
|Pa, (s")| > 5. Therefore, v ¢ {w',s'}. By the defini-
tion of Fy, rg42 (v) = ‘T as required.

O

6.2 Impossibility proofs with pairs of weak prop-

erties

We prove the impossibility results with pairs of weak prop-
erties, by assuming existence of a ranking system and ana-
lyzing the minimal graph in which the ranking system does
not rank all agents equally. This is done in the following
lemma:

LEMMA 1. Let F' be a weakly incentive compatible mini-
mally fair nontrivial ranking system. Then, there exists a
graph G = (V, E) and vertices vy ,vr,v € V such that:

1. For all graphs G' = (V', E') where |E'| < |E| or |E'| =
|B| and |V'| < |V|, v1 ~& va for all vi,v2 € V.

\4
) = 4

V1 -<g ’U-<g vT
For allv' € V: vy =& <& v,

S() # 0 and for all v € V such that S(v') # 0:

v ~C .

AR

PROOF. Let G = (V, E) be a minimal (in edges, then ver-
tices) graph such that there exist v, v2 where v1 <£ va. Such
a graph exists because F' is nontrivial. This graph immedi-
ately satisfies condition 1. Let vy ,vt be vertices such that
for allv' € V: vy =E v <E vt (such vertices exist because
=< is an ordering). Note that these vertices satisfy condition
4.
E # 0 because minimal fairness will force vi ~ wva. Let
(v,v") € E be some edge. From minimallity, eryE\{(UVU,)})(v)

%. From weak incentive compatibility, r&(v) = %‘ satis-
fying condition 2. Therefore,
V' <o} + 3 |[{0' ] 20} = 3|V
’{v'|v' =< v}’ + ’{v'|v' =< v}’ = ’{v'|v' =< v}’ +
+ |{v'|fu/ - v}|
’{v'|v' =< v}’ = ’{v'|v' - v}’

From the assumption that vy <§ Vol VL jg V1 <§ V2 jg
vr. Therefore, vi < v or v < vr. But as [{v'v <v}| =
[{v'|v" = v}|, and at least one is nonempty, both vi < v <
vT, satisfying condition 3.

Condition 5 is satisfied by noting that for all v' such that
S(w) #0, r&(') = % =r&(), and thus v ~Ev. O

Now we can prove the impossibility results for any pair of
weak properties:

PRroPOSITION 5. There exists no weakly incentive com-
patible nontrivial ranking system that satisfies the weak mono-
tonicity and weak positive response conditions.

PROOF. Assume for contradiction a ranking system F' that
satisfies the conditions. First note that F' is minimally fair,
because in a graph with no edges, all vertices have exactly
the same predecessor set. Thus, the conditions of Lemma 1
are satisfied, so we can let G = (V, E) and v,vi,vT € V be
the graph and the vertices from the lemma.

Now, let (vi,v2) € E be some edge. Let G' = (V,E \
{(v1,v2)}). By condition 1, va ~L, vr. By weak positive
response, vT jg ve. Since this is true for all vo € V
with P(v2) = 0, and vy <§ v <§ vT, we conclude that
Po(vy) = Pg(v) = 0. Now, by weak monotonicity vy ~& v,
in contradiction to the fact that vy <§ v. O

PRrROPOSITION 6. There exists no weakly incentive com-
patible nontrivial ranking system that satisfies the weak mono-
tonicity and weak union conditions.

PROOF. Assume for contradiction a ranking system F' that
satisfies the conditions. First note that F' is minimally fair,
because in a graph with no edges, all vertices have exactly
the same predecessor set. Thus, the conditions of Lemma 1
are satisfied, so we can let G = (V, E) and v,v,,vt € V be
the graph and the vertices from the lemma.

Now let G' = (V U{z}, E) be a graph with an additional
verter x ¢ V. By the weak union condition, vi <& wv.
By weak monotonicity, © 53 vy . Therefore, by the weak

union condition, r& (v) = r&(v) +1 = % +1. Let G" =
(Vu{z}, E\{(,v)|v' € V}). By condition 1 and the
fact that S (v) # 0, r&.(v) = ‘V‘;l. From weak incentive

compatibility, r&, (v) = r& (v), which is a contradiction. O

ProproSITION 7. There exists no weakly incentive com-
patible nontrivial minimally fair ranking system that satis-
fies the weak union and weak positive response conditions.

PROOF. Assume for contradiction a ranking system F' that
satisfies the conditions. As the conditions of Lemma 1 are
satisfied, let G = (V, E) and v,v.,vt € V be the graph and
the vertices from the lemma. Now let G1 = (V\{v.}, E) and
let Go = ({v.},0). From conditions 3 and 5, S(vi) = 0.
If Pa(vi) # 0, then by condition 1 in the graph G' =
(V,E\ {(z,v1)}) where x € Pg(vi), vt <& vi. But then
by weak positive response v <Xg v in contradiction to con-
dition 3.

Therefore, Pa(vi) = Sa(vi) = 0. Thus, G1 and G2
satisfy the conditions of the weak union condition with regard
to G. Therefore, v <& vt = v <§1 vT, in contradiction to
condition 1, because the edge set is the same and |Vi| <

V. O

6.3 Impossibility proofs with the strong prop-
erties

PROPOSITION 8. There ezists no weakly incentive com-
patible minimally fair ranking system that satisfies strong
positive response.

PROOF. Assume for contradiction a ranking system F' that
satisfies the conditions. Assume a graph G with two ver-
tices V.= {vi,v2} and no edges. By minimal fairness,



v1 ~& ve. Now assume a graph G' = (V,{(vi,v2)}) with
an added edge between vi and va. By strong positive re-
sponse, v1 <& va. However, by weak incentive compatibility,
L=r&(v1) =18 (v1) = 3, which is a contradiction. O

PROPOSITION 9. There ezists no weakly incentive com-
patible ranking system that satisfies strong momnotonicity.

PROOF. Assume for contradiction a ranking system F' that
satisfies the conditions. Assume a graph G with two ver-
tices V.= {v1,v2} and no edges. As Pa(vi) = Pa(v2),
by strong monotonicity, vi ~& va. Now assume a graph
G' = (V,{(vi,v2)}) with an added edge between vi and va.
As Pgr(v1) € Par(v2), v1 <& va. However, by weak incen-
tive compatibility, 1 = r&(vi) = r&(v1) = &, which is a
contradiction. []

ProrosiTiON 10. There exists no nontrivial strongly in-
centive compatible minimally fair ranking system..

PRrROOF. We will prove that for any G = (V, E), and for
anyvi,v2 € Vv 55 ve. We will use the incentive function
un(k) = n”, which gives a different value for each u,(k,m).
The proof is by induction on |E|.

Induction Base: Assume E = (), and let vi,v2 € V be
vertices. By minimal fairness, vi =< va.

Inductive Step: Assume correctness for |E| < n and
prove for |E| = n+ 1. Assume for contradiction that for
some v1,v2 € V: vy < wvi. Let v € V be a vertex such that
S(v) # 0 (such a vertex exists because |E| > 0). Note that
H{z € Vv ~& x}| < |V|, because otherwise vi <& x <& v,
Let E' = E\ {(v,z)|lzr € V} and G' = (V,E’). By the
assumption of induction, |{x € Vv ~& x}| = |V|. Thus,
{z € Vv <& z}| = 0. By strong incentive compatibility,
0< {z e Vp <&} <z e V<L 2} =0, thus
V| = |{z € Vv =L 2} < [{z € Vv =& 2}| < |V] which
yields a contradiction. [

ProrosiTION 11. There exists no weakly incentive com-
patible nontrivial minimally fair ranking system that satisfies
the strong union condition.

PROOF. Assume for contradiction a ranking system F' that
satisfies the conditions. As the conditions of Lemma 1 are
satisfied, let G = (V, E) and v,v.,v1 € V be the graph and
the vertices from the lemma. Now let Gy = (V \{vr} E\
{(W',vr) € Elv' € V}) and let G2 = ({vr},0). From con-
ditions 8 and 5, S(vrt) = 0 and thus G1 and G2 satisfy
the conditions of the strong union condition with regard to
G. Therefore, v, <E v = v, <§1 v, Wn contradiction to
condition 1, because |E1| < |E| and |Vi| < |V|. O

7. SOME ILLUMINATING LESSONS

Theorems 1 and 2 teach us some surprising lessons about
the implications of various versions of the basic properties.

7.1 Strong incentive compatibility is different
than weak incentive compatibility

We have seen in Proposition 10 that, as one would ex-
pect, strong incentive compatibility is impossible when as-
suming minimal fairness. However, it turns out that when
we slightly weaken the requirement of incentive compatibil-
ity to cover only the expected rank of the agent, Proposi-
tion 4 shows us this is possible. This means that the level
of incentive compatibility has an effect on the existence of
ranking systems.

7.2 Positive Response is not the same as Mono-

tonicity

The Positive response and Monotonicity properties seem,
at a glance, to be very similar, as they both informally re-
quire that the more votes an agent has, the higher it is
ranked. However, looking more deeply, we see that the Pos-
itive Response properties require this behavior to be mani-
fested across graphs, while the Monotonicity properties re-
quire that the effect be seen within a single graph.

This leads to interesting facts, such as not being able to
nontrivially satisfy both Weak Monotonicity and Weak Pos-
itive response with incentive compatibility (Proposition 5),
while each of the properties could be satisfied separately
(Propositions 4 and 1) . Furthermore, Strong Monotonicity
cannot be satisfied at all (Proposition 9) with weak incentive
compatibility, while Strong Positive Response can be satis-
fied even with strong incentive compatibility (Proposition

1).
7.3 The Weak Union property matters

Recall that the weak union property requires that when
two disjoint graphs are put together, the subgraphs must
still be ranked as before.

This property might seem trivial, but the impossibility
results in Theorem1 imply that this property has a part in
inducing impossibility. The reason for this is twofold:

e The combination of two graphs adds more options for
the agents in both subgraphs to vote for, which in order
to preserve incentive compatibility, must all preserve
the agent’s relative rank in the combined graph.

e The weak union property further implies that the rank-
ing system must not rely on the number of vertices in
the graph, and moreover, that the minimal nontriv-
ially ranked graph for a given ranking system must be
connected.

8. THE ISOMORPHISM PROPERTY AND
FURTHER RESEARCH

Most of the ranking systems we have seen up to now in
the possibility proofs take advantage of the names of the
vertices to determine the ranking. A natural requirement
from a ranking system is that the names assigned to the
vertices will not take part in determining the ranking. This
is formalized by the isomorphism property.

DEFINITION 13. A ranking system F satisfies isomorphism
if for every isomorphism function ¢ : Vi — Va, and two iso-
morphic graphs G € Gv,, ¢(G) € Gy, : jf:(c): o(=E).

It turns out that the ranking system Fj from the possibility
proof for weak incentive compatibility and weak monotonic-
ity (Proposition 4) satisfies isomorphism as well, and thus
there exists an weakly incentive compatible ranking system
satisfying isomorphism and weak monotonicity. The exis-
tence of weakly incentive compatible ranking systems satis-
fying isomorphism in conjunction with either the weak union
property or the weak positive response is an open question.

Another natural extension of this work, is to consider
weaker notions of incentive compatibility, where agents may
have beneficial deviations, but the amount or magnitude of
such deviations is bounded. In a pending paper, we address



the quantification of such weaker notions of incentive com-
patibility.
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