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Abstract

The scope of this work is the separation of N sources from M linear mixtures when the underlying system is
underdetermined, that is, when M ¡N . If the input distribution is sparse the mixing matrix can be estimated either by
external optimization or by clustering and, given the mixing matrix, a minimal l1 norm representation of the sources
can be obtained by solving a low-dimensional linear programming problem for each of the data points. Yet, when the
signals per se do not satisfy this assumption, sparsity can still be achieved by realizing the separation in a sparser
transformed domain. The approach is illustrated here for M =2. In this case we estimate both the number of sources
and the mixing matrix by the maxima of a potential function along the circle of unit length, and we obtain the minimal
l1 norm representation of each data point by a linear combination of the pair of basis vectors that enclose it. Several
experiments with music and speech signals show that their time-domain representation is not sparse enough. Yet,
excellent results were obtained using their short-time Fourier transform, including the separation of up to six sources
from two mixtures. ? 2001 Elsevier Science B.V. All rights reserved.
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1. Blind source separation with more sources
than mixtures

Let xt be an M -dimensional column vector cor-
responding to the output of M sensors at a given
discrete time instant t, and let X be an M × T ma-
trix corresponding to the sensor data at all times
t=1; : : : ; T (i.e., row i of X, denoted by Xi: cor-
responds to the ith mixture signal). Let S be the
N×T matrix of underlying source signals and let A
be the M ×N mixing matrix. The problem of blind
source separation [7], in the noiseless case, consists
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of #nding the solution to the following system of
equations:

X=AS; (1)

when A and S are unknown (A will be assumed to
be of full rank). For our purposes, a useful formu-
lation of this system is obtained by decomposing
A into its columns aj and expanding for every data
point

xt =
N∑

j=1

ajstj for t=1; : : : ; T: (2)

Then, in theM -dimensional mixture space, the aj’s
are the basis vectors de#ning the spatial signature
of the sources and the stj’s are the corresponding
components of the data points. Since results are
not aKected by reciprocal rescaling of the aj’s and
the stj’s, without loss of generality the aj’s will be
hereafter assumed to be normalized to unit length.
For M =N , several approaches to independent

component analysis have been used in the literature
(see for instance [6] for a recent survey) to numer-
ically solve Eq. (1) while assuming only statisti-
cal independence of the source components stj. Of
particular interest to the work presented here is the
so-called sparse case, in which only a small number
of the stj’s diKer signi#cantly from zero. Sparsity is
often modeled by a Laplacian distribution [11].
One of the most popular ICA approaches is the

InfoMax algorithm [1] that maximizes the informa-
tion of the recovered sources. When specialized for
the Laplacian distribution, it leads to the following
objective function:

min
W

− T log | detW|+
∑

jt

|WX|jt (3)

with W being the estimate of A−1; (WX)jt = stj the
estimates of the source components, and |·| denoting
the absolute value.
The drawback of the above formulation is that

it assumes the existence of the inverse matrix W.
Therefore, it is unsuitable for the underdetermined
case M ¡N . The alternative is to formulate the
search in mixing space rather than separation space.
Generalizing Eq. (1) to the case with additive
Gaussian noise X=AS + V, and assuming that A
is uniformly distributed, a maximum a posteriori

log-probability analysis leads to the following ob-
jective function [11,14]:

min
A;S

1
2
2

||AS − X||2 +
∑

jt

|stj| (4)

with 
2 the variance of the noise V. The #rst
term is the sum squared reconstruction error (the
log-likelihood of the Gaussian noise), and the sec-
ond term is the penalty for non-sparsity (assuming
independent Laplacian sources).
An overview of diKerent approaches to under-

determined BSS may be found in [4].

2. Estimating the mixing matrix and the sources
separately

As opposed to the case of a square mixing matrix,
where #nding W amounts to solving the problem
S=WX, in the underdetermined case we are faced
with two interrelated problems: estimating the mix-
ing matrix A and estimating the sources S. Trying
to solve both of them at the same time as in Eq. (4)
is a diNcult multivariate optimization problem.
Yet if we assume that the matrix A is given, the

problem of inferring the sources can be formulated
independently for each data point xt , leading to T
tractable small problems

min
st

1
2
2

||Ast − xt ||2 +
∑

j

|stj| for t=1; : : : ; T;

(5)

or in the absence of noise,

min
st

∑

j

|stj| subject to Ast =xt for t=1; : : : ; T:

(6)

Expanding into positive and negative coeNcients
as in [5], the latter can be formulated as a linear
programming problem for each t.
The mixing matrix A can either be estimated be-

forehand (as shown in Section 3), or by external
optimization using

min
A

∑

jt

|stj(A)|; (7)

where the stj(A)’s represent, at each iteration, the
solution of Eq. (6) under the current estimate of A.
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A similar two-step approach can be found in
[8,9], where a learning rule for A is derived by
#tting a multivariate Gaussian around the current
estimate of the source components.

3. A potential-function-based method
for estimating the mixing matrix and its
implementation in the two-dimensional case

Following from Eq. (2), if only one of the sources
(say, source i) was diKerent from zero, then all xt’s
would be proportional to ai and all data points in
mixture space would be aligned along the direction
of this basis vector. When the sources are sparse,
smaller coeNcients are more likely and thus, for a
given data point t, if one of the sources is signi-
#cantly larger, the remaining ones are likely to be
close to zero. Thus, the density of data in mixture
space, besides decreasing with the distance from the
origin, shows a clear tendency to cluster along
the directions of the basis vectors aj’s. Estimating
the mixing matrix, then, consists of #nding the
directions of maximum data density. For M =2, a
simple and useful representation of mixture space
is a scatter plot of the data, that shows xt2 against x

t
1

for every data point t. Fig. 1a, later in this section,
shows an example of a scatter plot.
Our approach to estimating the mixing matrix

consists of de#ning a local basis function around
the neighbor directions of each data point, and then
computing a potential function over all possible
directions as the sum of the individual contributions.
Local maxima of the potential function correspond
then to the estimated directions of the basis vectors.
This approach is developed here for the caseM =2,
when mixture space is a plane and directions can
be parameterized using the angle � in polar coordi-
nates. Let lt =

√
(xt1)2 + (xt2)2 and �t = tan−1(xt2=x

t
1)

be the radius and angle, respectively, of data point
xt , and let � be the angular diKerence between an
arbitrary direction and �t . We choose our basis
function � around xt as a triangular function of the
local angle �,

�(�) = 1− �
�=4

for |�|¡�=4;

=0 elsewhere (8)

and we de#ne a global potential function � over
the absolute angle � as

�(�; �)=
∑

t

lt�(�(�− �t)) (9)

with � a parameter to adjust the desired angular
width or resolution of the local contributions, and lt
a weight to put more emphasis on the more reliable
data (for equal perturbations, angular errors will
be smaller for data points that are farther from the
origin). In this work, the choice of the basis function
� and the setting of parameter � were heuristical,
as discussed in Section 6.
For practical purposes, the potential #eld is dis-

cretized by taking a sample of K points using an
equally spaced grid over the semiplane �k =�=2K+
k�=K; k=1; : : : ; K , yielding �(�k ; �). Local max-
ima of the resulting function are then identi#ed as
the columns of the estimated mixing matrix. Notice
that with this approach, with a proper setting for �,
it is not necessary to know the number of sources
beforehand, since it is inferred from the number
of local maxima in the potential function. Fig. 1a
shows the scatter plot of the data in the FourVoices
example, described in Section 6, and Fig. 1b shows
the potential function obtained with these data. The
depicted stars show the original basis vectors of the
mixing matrix, and the radial straight lines corre-
spond to the inferred directions.
The computational complexity of this algorithm

is O(T × K), to compute the angles between grid
and data points. In practice, and without loss of
performance, the number of data points T can be
reduced signi#cantly by discarding the less reli-
able ones, lt ¡h, with threshold h adjusted ex-
perimentally (see Section 6). On the other hand,
if the number K of grid points is too small, the
sampling resolution (180=2K) would be very poor
(see Section 6 for a discussion). Yet, when high
accuracy is required, one can start the computations
with a coarser grid, and re#ne the results around
the inferred directions either with a thinner grid
or with continuous maximization. The optimization
strategy of Section 2 is another way to get a higher
accuracy.
Similar approaches to estimate the mixing matrix

were described in [12] (using a histogram rather
than a potential function) for the case M =N =2,
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Fig. 1. (a) Scatter plot X2· vs. X1· of the data in the FourVoices example of Section 6. (b) Polar plot of the potential function
�(�). Stars show the actual directions of the basis vectors and radial straight lines show the inferred ones.

and in [10] (using feature detection tools from im-
age analysis).

4. l1 Norm decomposition for the estimation
of the sources, and its implementation in the
two-dimensional case

Even when the mixing matrix A is known, since
the system in Eq. (1) is underdetermined, its so-
lution is not unique. The usual approach to sparse
BSS consists of #nding the solution that minimizes
the l1 norm, as in Eq. (6). In this case, the optimal
representation of the data point

xt =
∑

j

ajstj

that minimizes
∑

j |sj| is the solution of the
corresponding linear programming problem. Ge-
ometrically, for a given feasible solution, each
source component is a segment of length |sj| in the
direction of the corresponding aj and, by concate-
nation, their sum de#nes a path from the origin
to xt . Minimizing

∑
j |sj| amounts therefore to

#nding the shortest path to xt over all feasible
solutions. Notice that, with the exception of sin-
gularities, since mixture space is M -dimensional,
M (independent) basis vectors aj will be required

Fig. 2. The shortest path from the origin to the data point xt

is O–A–xt (or O–A′–xt). Therefore, xt decomposes as O–A′
along direction a1 and as O–A along direction a2 (see text).

for a solution to be feasible (i.e., to reach xt without
error).
For the two-dimensional case (see Fig. 2), the

shortest path is obtained by choosing the basis
vectors ab and aa whose angles tan−1(ab2=a

b
1) and

tan−1(aa2=a
a
1) are closest from below and from

above, respectively, to the angle � t of xt . That is,
the basis vectors that enclose xt .

Let Ar =[abaa] be the reduced square matrix
that includes only the selected basis vectors, let
Wr =A−1

r and let str be the decomposition of the
target point along ab and aa. The components of the
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sources are then obtained as

str =Wrxt ;

stj=0 for j �= b; a: (10)

In practice, when applied to all t=1; : : : ; T , each
reduced matrix Wr only needs to be computed once
for all data points between any two pairs of basis
vectors.

5. Sparsity and selection of the representation
domain

Very often the data in the time domain do not
satisfy the requirement of sparsity required for the
above approach. For N =M (square A) good re-
sults can sometimes still be found, as long as the
scatter plot shows higher density in the directions of
the basis vectors. However, in the underdetermined
case higher sparsity is a requirement for good sep-
arability of the sources, even in the case when the
mixing matrix is known.
In this situation a possible approach is to look for

a linear transform T such that the new representa-
tion of the data is sparser. The transformation being
linear, the mixing matrix is preserved and Eq. (1)
can be rewritten as

T (X)=AT (S): (11)

The blind source separation, then, is performed in
the transformed domain. This approach was pro-
posed in [14] for the N =M case and applied suc-
cessfully to the separation of musical sources. The
selected transform was an FFT-based spectrogram,
and the inverse of the mixing matrix was esti-
mated with better accuracy than similar methods in
the time domain. Once the inverse mixing matrix
was found, the sources were recovered in the time
domain.
For M ¡N the transform has to be invert-

ible, so that the recovered sources T (S) can be
inverse-transformed back to the time domain. Thus,
the procedures in Sections 3 and 4 apply directly
to Eq. (11) simply by reinterpreting t as the appro-
priate index in the transformed domain (e.g., when
T stands for the FFT transform, t will represent the
discrete-frequency index).

The bene#ts of such an approach are clear in
Fig. 3. Six Oute signals playing diKerent notes (see
the SixFlutes example in Section 6) were syntheti-
cally mixed into two mixtures using equally spaced
angles between the basis vectors. Fig. 3a presents
a scatter plot of the resulting data (xt2 against xt1
for every t), showing a single big cloud. As can
be seen, the diKerent sources are indistinguish-
able. Then each mixture was FFT-transformed (see
Section 6 for details) and the scatter plot of the
frequency domain data is shown in Fig. 3b. The
diKerence is extraordinary. Now almost all signi#-
cant data points are neatly clustered along the six
directions of the basis vectors, thus providing very
good separability.

6. Experiments and results

6.1. Outline of the overall procedure

In order to prepare the mix, the following steps
were followed:
Mixing
• In order to achieve a balanced mix, all sources
were normalized to energy 1, S′=S=||S||.

• A 2 × N mixing matrix A was constructed by
setting the basis vectors aj’s to unit length and
(unless stated otherwise) equally spaced angles.

• The mixtures were obtained as in Eq. (1).
• The mixtures were rescaled to #ll a (−1,1) dy-
namic range, X′=X=maxit |xti |.
These mixtures were then used as input to the

separation procedure, using the following steps:
Signal analysis
• The mixtures were processed in frames of length
L samples and (unless stated otherwise) they
were multiplied by a Hanning window. A “hop”
distance d was used between the starting point of
successive frames, leading to an overlap of L−d
samples between consecutive frames.

• Each frame was transformed with a standard FFT
of length L, and the real and imaginary parts of
the positive half spectrum were taken, for a total
of L coeNcients.

• For each mixture, the coeNcients of successive
frames were concatenated in a single vector,
which was the actual input to the separation



2358 P. Bo1ll, M. Zibulevsky / Signal Processing 81 (2001) 2353–2362

Fig. 3. Scatter plot X2· vs. X1· of six Oute notes mixed into two mixtures with equally spaced angles in the (a) time and (b)
frequency domains.

procedure. In terms of the previous sections, the
set of all those frequency-domain coeNcients
plays the role of X.

Source separation
• An estimate Â of the mixing matrix was found
according to Section 5, using the basis function
� (8), the scaling parameter �, the threshold h,
and K grid points.

• Using Â (unless stated otherwise), an estimate of
the sources was obtained following the procedure
of Section 3 which, for a given set of data, has a
unique solution.

Resynthesis
• For each estimated source, the coeNcient vector
was split back into frames.

• The real and imaginary components were re-
grouped into complex coeNcients, and the spec-
tra were extended to negative frequencies. For
each spectrum, the standard IFFT transform was
used to obtain time-domain frames of length L.

• Each frame was multiplied by the inverse win-
dow, and the overlap between frames was
removed, 50% on either side, by keeping only
the central part of the frame (thus avoiding the
distortion at the edges that often appears after
frequency-domain manipulation). The resyn-
thetized signals were #nally built by simple
concatenation of the resulting pieces.
Finally, the quality of the separation was tested

using the following measures:

Performance measures
• The error in the estimated matrix was measured
by the diKerence between the angles of the esti-
mated and the actual basis vectors (columns of
the mixing matrix).

• The estimated sources Sj were rescaled to the
same energy level as their corresponding original
sources.

• A reconstruction index was de#ned as a
signal-to-noise ratio of the error, that is

S=N =10 log
||Ŝ − S||2
||S||2 : (12)

6.2. Parameter setting

The setting of the diKerent parameters was done
heuristically by optimizing the overall performance
of the algorithm. For the data sets that were used,
the Hanning window performed better than a Ham-
ming window or a square window. The length L of
the frame was selected among a few consecutive
powers of 2 and the hop distance d was set around
0:3L to provide enough overlap without overload-
ing the system with data.
The triangular basis function � was compared

with a round and a square basis functions, with
little diKerences, but � seemed to provide better
resolution. The threshold h was set to 0.3, about
a third of the dynamic range. The most sensitive
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parameter was � because the number of maxima
of the potential function (i.e., the estimated num-
ber of sources) depended on it. As it is often the
case with clustering algorithms, the proper choice
of � depends on the data (the actual quality of
the clusters). Thus, for each experiment below, we
simply evaluated the range [�min; �max] over which
the estimated number of sources were correct, and
kept all further experiments within that range. Fi-
nally, unless stated otherwise, the number K of grid
points for the potential function was set so that a
grid point was coaligned with (had the same angle
as) each of the basis vectors aj (thus allowing for
a perfect estimate), and so that there was at least
one grid point between every two consecutive vec-
tors (since at least one sampling point is needed
to provide a minimum between two adjacent local
maxima).

6.3. Experiments with steady sources

The approach was #rst tested using the SixFlutes
data set: the sound of a Oute playing steady, iso-
lated notes was recorded at high quality in an
acoustically isolated booth without reverberation,
and sampled at 44:1 kHz with 16 bits resolution 4

Six 743 ms excerpts (32768 samples) were se-
lected for the sources, corresponding to the notes
a4, d5, f5, g5, c6 and d#6. These sounds were so
steady (the spectra varied so little over time) that
the whole signal could be processed with a sin-
gle FFT with L=32768, thus avoiding the use of
frames or windowing. In experiment SixFlutes I,
the clustering algorithm of Section 3 was run with
parameter �=5 and a grid with K =30 equally
spaced samples. The clustering was successful and
the mixing matrix was recovered exactly. A max-
imally sparse estimation of the sources was then
obtained with the separation procedure of Section
4. The reconstruction indices obtained are shown
in Table 1. When listening to the recovered sig-
nals the correct notes were very clear, but a little
background noise was present (the accumulated
sounds of the player blowing into the Oute, plus
some traces of cross-talk). Similar results were ob-

4 All Oute examples were performed by Linda Antas, Uni-
versity of Washington.

tained with the external optimization approach of
Section 2 (Eq. (7)) when the starting state was not
too far from the solution (otherwise it got trapped
in local minima), but this procedure was much
slower.
The experiment was then repeated several times

using random mixing matrices. The matrix was
always correctly estimated within the 3 degrees of
resolution provided by the grid, but the reconstruc-
tion indices dropped.The following twoexperiments
were then devised to measure the sensitivity of
the separation algorithm to the accuracy in the
estimation of the matrix and to the closeness of
the sources, independently. Experiment SixFlutes
II was identical to SixFlutes I except for the grid
points, which were shifted 3◦ from their original
positions and therefore were no longer aligned with
the basis vectors. After clustering, the estimated
angles were all oK by 3◦, as expected. Results of
the separation (Table 1) were impaired by 8:1 dB
on average. In experiment SixFlutes III the ba-
sis vectors were lumped together in a total span
of 6◦, so that each source was separated by only
1◦ from the next. The number of grid points was
set to K =540 so as to guarantee the alignment,
and �=55 was required to get enough resolution.
With this setting, the mixing matrix was again per-
fectly recovered and separation indices are shown
in Table 1. The loss was now only 4:1 dB on av-
erage with respect to the SixFlutes I experiment,
which illustrates the relative insensitivity of the
separation procedure to the proximity between the
sources.
For the sake of comparison, the last experiment

(SixFlutes IV) was conducted on the same data set
using the mixtures in the time domain instead of
the frequency domain. The maxima of the poten-
tial function were no longer in the directions of the
basis vectors and therefore the estimate of the ma-
trix was meaningless. The separation was then at-
tempted using the original mixing matrix instead,
but the algorithm still failed to separate the sources,
as shown in Table 1.
For the #rst three experiments above the op-

erative range for parameter � was found to be
[0:9; 209:4]; [0:0; 44:1] and [51:1; 3462:0], respec-
tively. For SixFlutes IV the algorithm failed no
matter what the value of � was.
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Table 1
S=N reconstruction indices (dB) for the diKerent experiments (see text)

SixFlutes I 50.5 52.5 49.4 43.4 49.1 51.8
SixFlutes II 41.2 36.0 50.8 41.7 35.6 42.5
SixFlutes III 47.7 42.8 43.3 37.2 47.2 54.0
SixFlutes IV −1:9 −2:0 −2:2 −2:4 −2:3 −2:4
FourVoices 21.7 19.4 15.7 16.6
FiveSongs 15.6 15.5 15.0 15.1 15.2
SixFluteMelodies 20.4 19.4 14.2 16.1 24.7 29.1

6.4. Experiments with dynamic sources

The three experiments presented next were
performed on much more dynamic signals, and
the frame-by-frame analysis described above
was required. The experiments were conducted
on the following sets of signals: A FourVoices
data set with four 2:9 s sentences pronounced
by four diKerent people (three females and a
male), recorded at 22; 050 Hz and 8 bits with a
low-quality microphone on a home personal com-
puter. Pre-processing was done with L=2048 and
d=614 samples. A FiveSongs data set with #ve 5 s
long full-ensemble music pieces (two classical and
three pop=folk music) extracted from standard CDs
(44; 100 Hz=16 bits), downsampled to 11; 025 Hz
monophonic and processed with L=4096 and
d=1228 samples. Finally, a SixFluteMelodies
data set (see footnote 4) including six 5:7 s long
Oute melodies (the two voices of a canon, the two
voices of a duet and two unrelated melodies) with
a high-quality registration at 44; 100 Hz=16 bits,
down-sampled to 22; 050 Hz and processed with
L=8192 and d=3276 samples.
In all three cases the mixing matrix was formed

with equally spaced angles, and the number of
grid points was selected for perfect alignment
(K =36; 35; and 30, respectively) in order to be
able to measure the maximum separation ability
of the system. As the SixFlutes experiments had
shown, the estimation of the mixing matrix was
always successful, and the operative range for
� laid in the intervals [1:4; 94:2]; [0:1; 14:6], and
[1:6; 145:0], respectively. Results of the separation
are shown in Table 1. Although good enough in
themselves, the reconstruction indices of the dy-
namic signals were signi#cantly poorer than those

of the SixFlutes I experiment, in part due to the
intrinsic diNculties of the short-term analysis and
resynthesis. Reconstruction indices were on the
same range for the three examples, regardless of
the number of voices, with somehow worse results
in the case of the FiveSongs, probably due to the
higher complexity of the sounds. The plot of the
recovered signals was, in all cases, very similar
to the plot of the original sources, as illustrated
in Fig. 4 for the FourVoices case. From a subjec-
tive listening point of view, the separation of the
FourVoices example was remarkable for the high
intelligibility of the recovered sentences, in spite of
some background noise and cross-talk. In the case
of the FiveSongs, the reconstructed songs were
also very clear but the quality of the sound was
sensibly degraded by background noise, cross-talk
and a Oattening of percussive sounds and sharp
transitions. Finally, in the SixFluteMelodies exam-
ple, although the recovered melodies were clear,
a sort of ringing artifact appeared in the transi-
tions between notes, and some frame-rate rattling
noise was present. Sound examples for the above
experiments are available on-line in [3].

7. Discussion and further work

In the context of underdetermined blind source
separation (i.e., BSS with fewer mixtures than
sources), the three main contributions of this paper
have been the bene#ts of performing blind source
separation in the frequency domain (rather than in
the time domain); a clustering algorithm for the
estimation of the mixing matrix in the two-sensor
case; and a shortest path separation procedure that
yields the most sparse estimate of the sources from
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Fig. 4. FourVoices experiment: (a) mixtures and (b) sources and recovered signals (pairwise).

two mixtures. Several experiments have been pre-
sented involving music and speech signals, with
rather good results, including the successful sepa-
ration of six sources from two mixtures.
From the above three points the most eKective

contribution to a successful separation has probably
been the exploitation of sparsity in the frequency
domain since, as experiments have shown, only the
transformed data satisfy the assumptions of spar-
sity required by the clustering and separation algo-
rithms. The reason for this is probably the highly
harmonic nature of speech and music signals. With
a proper setting for �, the estimation of the mix-
ing matrix has always been successful, within the
accuracy provided by the sampling grid, and the
separation was more adversely aKected by an in-
accurate estimate of the basis vectors than by the
proximity of the mixed sources to each other. S=N
reconstruction indices have shown excellent scores
for steady Oute notes that could be processed with a
single FFT, and good scores for the other three
dynamic examples, which required short-term
analysis and resynthesis. The recovered signals

have been highly intelligible to the ear in all
cases, in spite of some background noise and some
cross-talk. Results seem to show that the diNculty
of the separation depends more on the complex-
ity of the sounds than on the number of sources
present, but further experiments would be required
in order to assess this trend.
Even if l1 norm minimization is theoretically the

most likely a posteriori estimation for Laplacian
sources, in practice good separation is obtained only
where the sources are disjoint or almost disjoint, re-
gardless of whether they are Laplacian or not. This
is usually the case for the overtones of signals with
diKerent pitch, for instance. But when sources over-
lap, the shortest path separation criterion, although
statistically optimal, is unable to give the credit to
the sources actually involved.
The main goal of this work has been the valida-

tion of the overall procedure, but many particular
aspects require further study. The setting of the
parameters was heuristical. Little exploration was
done for the analysis and resynthesis procedure
(for instance, a 50% overlap with a triangular
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window would probably improve the resynthesis).
A deeper study of the distribution of the sources
(both in the time and frequency domain) would
be useful, and other representation domains could
be evaluated (Gabor, wavelet, or even combined
representations), that might be better adapted to
transitions, or lead to improved sparsity (and
hopefully disjointness) of the sources. Finally, the
performance measures could be extended to include
the cross-coherence of the reconstructed sources.
The work presented here can be extended to any

number of sensors by using a clustering algorithm
in the estimate of the mixing matrix, and stan-
dard linear programming for the decomposition into
sources. Current and further work include the study
of diKerent decomposition criteria for the separa-
tion of synthetic signals with diKerent degrees of
sparsity [13], the evaluation of alternative analysis
and resynthesis procedures, the study of other repre-
sentation domains, and the extension of the overall
procedure to delayed [2] and convolved mixtures.
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