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Abstract. Consider a web site containing a collection of web pages with
data. Each page is associated with a weight representing the frequency
that page is accessed by users. In the tree hierarchy representation, ac-
cessing each page requires the user to travel along the path leading to
it from the root. By enhancing the index tree with additional edges
(hotlinks) one may reduce the access cost of the system. That is, the
hotlinks reduce the expected number of steps needed to reach a leaf
page from the tree root, assuming that the user knows which hotlinks to
take. The hotlink enhancement problem involves finding a set of hotlinks
minimizing this cost. The paper proposes a hotlinks structure allowing
a user with limited a-priori knowledge to determine which hotlink to
use at every given point. Then, a polynomial algorithm is presented for
solving the hotlink enhancement problem for such hotlinks on trees of
logarithmic depth. The solution is first presented for binary trees and
then extended to arbitrary degree trees. It is also shown how to gener-
alize the solution to situations where more than one hotlink per node is
allowed. The case in which the distribution on the leaves is unknown is
discussed as well, and is given an algorithm guaranteeing (an optimal)
logarithmic upper bound on the expected number of steps down the tree.

1 Introduction

Finding desired information in a large and diverse database is a complex task.
When such a function is needed in a chaotic and large data collection such as
the World Wide Web, such a function becomes even harder yet crucial. There
are two basic ways to handle information finding in such a collection. One is
a “flat” approach which views the information as a non-hierarchical structure
and provides a query language to extract the relevant data from the database.
An example of this approach on the Web is the Google search engine [1]. The
other method is based on a hierarchical index to the database according to a
� Supported in part by a grant from the Israel Science Foundation.
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taxonomy of categories. Examples of such indices on the Web are Yahoo [6] and
the Open Directory Service [7].

An advantage of the flat approach over the hierarchical one is that the number
of human operations required to find a desired piece of information is much lower
(if the right query is used). As opposed to that, in the hierarchical approach
it is necessary to traverse a path in the taxonomy tree from the root to the
desired node in the tree. Human engineering considerations further aggravate
this problem since it is very hard to choose an item from a long list (a typical
convenient number is 7–10). Thus, the degree of the taxonomy tree should be
rather low and the average depth of it is therefore high. Another problem of the
hierarchical approach is that the depth of an item in the taxonomy tree is not
based on the access pattern. See, e.g., [8]. As a result, items which have very high
access frequency may require long access paths each time they are needed, while
items which are “unpopular” may still be very accessible in the taxonomy tree.
We would like a solution that does not change the taxonomy tree itself, since
this taxonomy is likely to be meaningful and useful for the user. The solution
proposed in this paper leaves the tree unchanged, but adds an auxiliary structure
that helps to user reach the destination faster.

A partial solution to this problem is currently used in the Web, and consists
of a list of “hot” pointers which appears in the top level of the index tree and
leads directly to the most popular items. We refer to a link from a hotlist to its
destination as a hotlink. This approach is not scalable in the sense that only a
small number of items can appear in such a list.

In the current paper we study a generalization of this “hotlist”, allowing
us to have such lists in multiple levels in the index tree — not just the top
level. The resulting structure is termed a hotlink-enhanced index structure (or
enhanced structure for short). It is proposed to base the decision concerning the
hotlinks to be added on the statistics of visited items in the index. The goal is
to minimize the expected number of links one has to follow from the root to an
item. It is therefore possible to consider static systems where the hotlinks do not
get updated often, and dynamic systems which follow the access pattern and
dynamically change hotlinks on the fly. In this paper we consider the former,
simpler system.

Let us formally define our problem. An index system is based on a fixed
tree which classifies the data items in a hierarchical manner. For the sake of
simplicity we assume that data resides only in leaves of the tree 1. To this tree,
hotlinks are added and updated dynamically, based on access statistics to the
data items, yielding the hotlink-enhanced index structure.

When searching for an item, the user starts from the root of the enhanced
structure and advances along tree edges and hotlinks towards the required des-
tination. The original index tree contains a unique path leading from the root
of the tree to the desired leaf. An implicit assumption underlying the common
hierarchical approach is that at any node along the search in the tree, the user

1 The case where data resides in internal nodes is easily modeled by adding leaves to
the tree in the simpler model.
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is able to select the correct link leading towards the desired leaf. This does not
necessarily mean that the user knows the tree topology, but rather that the user
has some general knowledge about the domain, and the links the user finds at
any node reflect some natural partitioning of the domain. Thus, when the user
sees several tree edges and hotlinks at a node, the user is capable of selecting
the right link downwards in the tree.

Once hotlinks are added, the situation becomes more complex, as the result-
ing hotlink-enhanced index structure is no longer a tree but a directed acyclic
graph (DAG), with multiple alternative paths for certain destinations. Again,
an underlying assumption at the basis of the hotlink idea is that when faced
with a hotlink in the current page, the user will be able to tell whether or not
this hotlink may lead it to a closer point on the path to the desired destination.
However, the considerations that led to adding the various hotlinks to the tree
are not known to the user. Thus, when the user is at some node, the user can
know only the hotlinks emanating from the current node (or, in the best case,
also hotlinks emanating from previous nodes the user visited on the way from
the root to the current node). In particular, the user cannot know whether any
hotlinks emanate from descendents of the current node, or where do they lead.

The above discussion implies that any approach taken for designing a hotlink-
enhanced index structure must take into account certain assumptions regarding
the user’s search policy. There could be a number of different models concerning
the particular choices taken by the user. At the extreme lies a natural model that
is probably too strong to be used in reality. This model captures situations where
the user somehow knows the topology of the enhanced structure. Henceforth
we refer to this model as the “clairvoyant” user model, which is based on the
following assumption.
The clairvoyant user model: At each node in the enhanced structure, the
user can infer from the link labels which of the tree edges or hotlinks available at
the current page is on a shortest path (in the enhanced structure) to the desired
destination. The user always chooses that link.

In contrast, the model proposed here is based on the assumption that the user
does not have this knowledge. This forces the user to deploy a greedy strategy.
The greedy user model: At each node in the enhanced structure, the user
can infer from the link labels which of the tree edges or hotlinks available at the
current page leads to a page that is closest in the original tree structure to the
desired destination. The user always chooses that link.

Note that by this assumption, whenever a user is looking at the page at
node v in the hotlink-enhanced structure, the user is aware of all the tree edges
and hotlinks in that page, but the user’s knowledge about the rest of the tree
corresponds only to the logical partitioning of the domain, namely, the original
tree structure. In other words, the user is not aware of other hotlinks that may
exist from other pages in the tree. This means that the user’s estimate for the
quality of a tree edge or hotlink leading from v to some node u is based solely
on the height of u in the original tree (or equivalently the distance from u to
the desired destination in the tree). An important implication is that following



Hotlink Enhancement Algorithms for Web Directories 71

the greedy strategy does not necessarily lead to an optimal path in the hotlink-
enhanced index structure.

This paper addresses the optimization problem faced by the index designer,
namely, to find a set of hotlinks that minimizes the expected number of links
(either tree edges or hotlinks) traversed by a greedy user from the root to a
leaf. More formally, given a tree T , representing an index, a hotlink is an edge
that does not belong to the tree. The hotlink starts at some node v and ends
at (or leads to) some node u that is a descendant of v. (One may possibly
consider a different model which allows to have hotlinks from a node v to a
non-descendant node u residing in another subtree. In our model, however, such
hotlinks will never be used, due to the greedy assumption.) We assume, without
loss of generality, that u is not a child of v. Each leaf x of T has a weight p(x),
representing the proportion of the user visits to that leaf, compared with the
total set of user’s visits. Hence if normalized, p(x) can be interpreted as the
probability that a user wants to access leaf x. Another parameter of the problem
is an integer K, specifying an upper bound on the number of hotlinks that may
start at any given node. (There is no a-priori limit on the number of hotlinks
that lead to a given node).

Let S be a set of hotlinks constructed on the tree (obeying the bound of K
outgoing hotlinks per node) and let DS(v) denote the greedy path (including
hotlinks) from the root to node v. The expected number of operations needed
to get to an item is f(T, p, S) =

∑
v∈L(T ) |DS(v)| · p(v). The problem of opti-

mizing this parameter is referred to as the hotlink enhancement problem. Two
different static problems arise, according to whether the probability distribu-
tion p is known to us in advance or not. Assuming a known distribution, our
goal is to find a set of hotlinks S which minimizes f(T, p, S) and achieves the
optimal cost f̂(T, p) = minS{f(T, p, S)}. Such a set is termed an optimal set
of hotlinks. On the other hand, under the unknown distribution assumption,
the worst-case expected access cost on a tree T with a set of hotlinks S is
f̃(T, S) = maxp{f(T, p, S)}, and our goal is to find a set of hotlinks S minimiz-
ing f(T, S) and achieving the optimal cost f̃(T ) = minS{f̃(T, S)}.

For the latter problem, there exists an equivalent formulation, independent
of the probability distributions, based on the observation that for every tree T
and hotlink function S, f̃(T, S) = maxv∈L(T ){|DS(v)|}, and therefore:

Lemma 1. For every tree T , f̃(T ) = minS{maxv∈L(T ){|DS(v)|}}.
Note that the above definitions can be repeated for the clairvoyant user model.

The clairvoyant user model, not used in the current paper, was discussed
in previous papers. A proof of NP-hardness for adding hotlinks on DAGS was
presented in [2] by a reduction from the problem of Exact Cover by 3-Sets
(which is known to be NP-Complete) to that of hotlink enhancement for DAGs.
An interesting analogy was presented for the clairvoyant user model between
the problem of adding hotlinks and coding theory. One can think of the index
tree as the coding of words (where in a binary tree, for example, a left move
corresponds to ’0’ and a right move corresponds to ’1’). Thus any leaf is a code-
word in the code-alphabet. By adding a hotlink we actually add another letter
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to the alphabet. Consequently, Shannon’s theorem suggests a lower bound for
the problem. In particular, in binary trees, denoting by H(p) the entropy of
the access distribution on the leaves, and denoting by TA the hotlink-enhanced
index structure resulting from the original tree T with the hotlinks added by
the algorithm A, E[TA, p] ≥ H(p)/ log 3 = 1

log 3

∑N
i=1 pi log (1/pi), and in trees

of maximal degree ∆, E[TA, p] ≥ H(p)/ log ∆. An approximation algorithm for
adding hotlink to bounded degree trees for a clairvoyant user is presented in [3].
It turns out that this algorithm can also be used under our greedy user model.
The approximation ratio of the algorithm depends on ∆, the maximum degree
of the tree, and on the entropy of the access distribution (and is in general at
least log(∆ + 1)). Recently, a polynomial time algorithm for approximating the
hotlink assignment problem in the clairvoyant model was presented in [5]. This
algorithm uses greedy choices at each iteration, and achieves an approximation
ratio of 2. Another recent article [4] discusses the use of hotlink assignments in
asymmetric communication protocols to achieve better performance bounds.

In this paper we present an algorithm for optimally solving the hotlink en-
hancement problem on trees in the greedy user model. The algorithm uses dy-
namic programming and the greedy assumption to limit the search operations.
We also show how to generalize the solution to arbitrary degree trees and to
hotlink enhancement schemes that allow up to K hotlinks per node. In con-
trast with the approximation algorithm of [3], which is polynomial for trees of
bounded degree but arbitrary depth, our (exact) algorithm can be used for trees
with unbounded degree, but its time complexity is polynomial only on trees of
logarithmic depth.

Finally, we give an algorithm for handling settings when the distribution
on the leafs is unknown. This algorithm provides a logarithmic bound on the
expected number of steps to reach the desired leaf. Deriving a lower bound on
the expected tour length of optimal solution, we then conclude that our algorithm
ensures constant ratio approximation.

In the full paper we show that the NP-hardness proof of [2] for the hotlink
enhancement problem on DAGs in the clairvoyant user model can be easily
augmented to prove also the NP-hardness of the problem in the greedy model.

In what follows, Section 2 presents our algorithm for finding an optimal set
of hotlinks and its analysis, and Section 3 discusses the particular case where
the frequencies of visiting each page are unknown.

2 Known Distribution Model

Our algorithm makes use of the following properties of the problem (whose proofs
are deferred to the full paper).

Lemma 2. There exists an optimal solution to the hotlink enhancement problem
in which no two hotlinks arrive at the same node.

It is convenient to consider a hotlink from node u to node v as a pair of
parentheses, where the start-node u of the hotlink marks the left parenthesis
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and the end-node v marks the right parenthesis. Using this representation, the
hotlinks placed along any path from the root over the tree form a sequence of
parentheses.

We say that a set of hotlinks S is well-formed if on any path from the root
over the tree, the parentheses sequence of S on this path is well-formed, namely,
hotlinks do not cross each other. Observe that for a well-formed set of hotlinks
S, the greedy path from the root to any leaf v coincides with the shortest path in
the hotlink-enhanced index structure. This means that the costs of a well-formed
S in the greedy user model and in the clairvoyant user model are the same.

Lemma 3. For every index tree T , there exists an optimal solution to the hotlink
enhancement problem in the greedy user model which is well-formed.

The usefulness of this lemma stems from the fact that it helps to narrow
down the domain of potential solutions that needs to be searched (in the greedy
user model) in order to find the optimal one.

We first restrict our discussion to n-node binary trees of depth O(log n) and
to the case K = 1. We represent a solution S as a function S : V �→ V , with
S(v) being the endpoint of the hotlink starting at v.

For every node v in the tree T , let Tv denote the subtree of T consisting
of v and all its descendants, and let Pv denote the path leading from the root
to v in T . We generalize the definition of S to a function S : V �→ 2V . For a
node v, the set S(v) is referred to as an undetermined hotlink, and interpreted
as the collection of candidates to be the final endpoint of the hotlink from v. An
(undetermined) hotlink function S is said to be determined or fixed for a node
set W ⊆ V if S(w) is a singleton for every w ∈ W .

The cost associated with the solution S on the subtree Tv, assuming S is
determined for Pv ∪Tv, is c(v, S) =

∑
w∈L(Tv) |DS(w)| · p(w). The cost of S over

the entire tree T with root r is thus f(T, p, S) = c(r, S).
An (undetermined) hotlink function S is said to be separated w.r.t. the node v

(or simply v-separated) if the nodes of Pv are partitioned into three disjoint sets,
Pv = PF

v (S) ∪ PI
v (S) ∪ PO

v (S), called the fixed-set, in-set and out-set, such that
(1) for every w ∈ PF

v (S), S(w) is a single descendant of w in Pv, (2) for every
w ∈ PI

v (S), S(w) ⊆ Tv, and (3) for every w ∈ PO
v (S), S(w) ⊆ V \ (Pv ∪ Tv).

We remark that our algorithm will consider candidate solutions separated
w.r.t. v in which for every node w in the in-set we have equality, i.e., S(w) = Tv,
and similarly, for every node w in the out-set we have S(w) = V \ (Pv ∪ Tv).

For two solutions S1 and S2 and a node set W , we say that S1 is compatible
with S2 on W if S1(v) ⊆ S2(v) for every node v ∈ W . S1 is compatible with S2
if it is compatible with S2 on the entire node set of T .

Note that for an undetermined hotlink function S, the greedy path DS(w) is
not necessarily defined for every leaf w of T . For the path to be uniquely defined
as DS(w) = 〈root = v0, v1, . . . , vq = w〉, it is required that the sequence of nodes
v0, . . . , vq satisfies S(vi) = {vi+1} for i = 1, 2, . . . , q − 1. In this case We say that
S is route-determined for w. This means, in particular, that the cost of accessing
w is determined.
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Lemma 4. (a) If a hotlink function S is determined for Pv ∪ Tv, then it is
route-determined for every leaf w in Tv. (b) If a v-separated hotlink function S
is determined for PI

v ∪ Tv, then it is route-determined for every leaf w in Tv.

Lemma 4 facilitates the use of dynamic programming on the problem, as it
leads to the observation that the cost of any solution S over the subtree Tv is
determined solely on the basis of its values on Pv ∪ Tv, and more importantly,
the cost of any v-separated solution S over the subtree Tv is determined solely
on the basis of its values on PF

v ∪ PI
v ∪ Tv. More formally, we have:

Lemma 5. Consider two hotlink functions S1 and S2 that are both v-separated
with the same fixed-set, PF

v (S1) = PF
v (S2), and the same in-set, PI

v (S1) =
PI

v (S2). If S1 and S2 are determined in the same way on PF
v ∪ PI

v ∪ Tv, i.e.,
S1(w) = S2(w) for every w ∈ PF

v ∪ PI
v ∪ Tv, then c(v, S1) = c(v, S2).

The recursive procedure Proc employed by the algorithm receives as its input
a node v in the tree, and a v-separated partial hotlink function S of a specific
form. Suppose v is of depth d from the root, and let Pv = (root = v0, v1, . . . , vd =
v). Then S will be specified as a vector s̄ = 〈s(0), . . . , s(d − 1)〉, where

s(i) =






j, S(vi) = vj for i + 2 ≤ j ≤ d,
I, S(vi) = Tv,
O, S(vi) = V \ (Pv ∪ Tv).

The goal of Procedure Proc(v, s̄) is to calculate the optimal completion of S
on PI

v (S) ∪ Tv, and its cost.
Procedure Proc operates as follows. If Tv is small enough (e.g., it contains

fewer than K0 nodes, for some constant K0), then the best determination and
its cost are found by exhaustive search, examining all possible completions.

Now suppose the tree Tv is larger than K0 nodes. Denote the children of
v by vL and vR. We aim to generate all possible vL and vR separated partial
hotlinks that are compatible with S. The procedure goes over all possible ways
of partitioning the set PI

v (including v itself) into four disjoint sets named HL,
HR, BL and BR. The set HL will be interpreted as the set of nodes that have
a hotlink directed to vL (in any solution it is enough to have only one such
hotlink). If HL = ∅, then in the current completion there is no hotlink to be
ended directly in node vL. The set BL will be interpreted as the collection of
start points of hotlinks to be ended at the nodes of TvL

except vL itself (the
left side sub tree). The sets BR and HR are defined analogously for the right
hand side of the tree Tv. Thus we get all vR separated and vL separated hotlink
functions possible from S.

For each such partition (HL, HR, BL, BR) constructed from S, the procedure
does the following. It first generates the (partial) solution SL derived from S
by specifying that the hotlink from the node of HL (if exists) ends at vL, the
hotlinks from the nodes of BL (if exist) end inside TvL

, and the hotlinks from
the nodes of HR ∪ BR end outside PvL

∪ TvL
. I.e., the vector representation of

the generated SL is



Hotlink Enhancement Algorithms for Web Directories 75

sL(i) =






d + 1, i ∈ HL,
O, i ∈ BR ∪ HR,
s(i), otherwise.

(Note that in particular, sL(i) remains I for nodes vi of BL, and maintains its
previous value (which is either O or some i + 2 ≤ j ≤ d) for nodes outside PI

v .
The procedure similarly generates the partial solution SR derived from S by

following the specifications of the partition for the right subtree, TvR
.

Then, the procedure is invoked recursively on (vL, s̄L) and (vR, s̄R), and
returns cost values xL and xR respectively (accompanied with the determinations
yielding them).

Of all the partitions examined, the procedure then selects the one yielding
the lowest combined cost xL + xR (along with the determination yielding it).

Note that the algorithm invokes the procedure by dynamic programming,
rather than plain recursion. Namely, it maintains a table of determinations and
costs A(v, s̄), for every node v and partial solution s̄ of the type described above.
Whenever the procedure requires an answer for some pair (v, s̄), the procedure
first consults the table A. Hence each entry in the table must be computed only
once, on the first occasion it is requested. (For example, BL at v may be the
same when in two different computations that differ in BR.)

Lemma 6. For every node v in T , and for every v-separated hotlink function
S, procedure Proc returns a determination for (v, s̄) of the minimal cost c∗(v, S).

To find the optimal cost, minS{f(T, p, S)}, we need to run Proc(r, 0̄) where 0̄ is
an empty vector and r is the root of the tree (there are no nodes in Pr).

Let us first estimate the number of entries in table A. There are n possible
values for v. For each v, we need to bound Nv, the number of legal vectors s̄
that need to be considered. Note that the length of s̄ is bounded by Depth(T ) =
O(log n). Observe also that for every 0 ≤ i ≤ d − 2, where v is at depth d,
there are at most d − i possible values for s(i) (namely, any i + 2 ≤ j ≤ d,
plus the values I and O). Each s(i) may assume up to O(log n) different values,
and hence it seems as though there might be up to (c log n)c log n different s̄
configurations overall, for constant c, which is superpolynomial. Fortunately, the
number of legal solutions is restricted by the parenthesis requirement of Lemma
3. In particular, since the number of legal sequences of m parenthesis pairs is
the m’th Katalan number, Km = 1

m+1

(2m
m

)
, and there are

(
d+1+2m−1

2m

)
ways to

choose placements for those parentheses around d nodes taken 2m at a time with
repetition allowed, the number of legal choices of m pairs of parentheses over d
letters is bounded by Km ·(d+2m

2m

)
. It can be readily verified that Nv, the number

of entries corresponding to v, is bounded above by

Nv ≤
d∑

m=1

2d−m 1
m + 1

(
2m

m

)

·
(

d + 2m

2m

)

≤ 2d
d∑

m=1

(
2m

m

)

·
(

d + 2m

2m

)

≤ 2d · d ·
(

2d

d

)

·
(

3d

2d

)

≤ d · 26d = O(log n) · 2O(log n) = O
(
nO(1)

)
.
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Hence the number of invocations of the procedure is polynomial in n. Each
invocation requires us to go over all the possible partitions of a set of size at
most O(log n) into four subsets (two of which are at most singletons), hence its
complexity is polynomial in n. Consequently, the entire algorithm is polynomial
as well.

Theorem 1. There exists a polynomial time algorithm for solving the hotlink
enhancement problem with known probability distribution on n-leaf binary trees
of depth O(log n).

The solution as described above applies only to binary trees. In the full paper
we outline the way to generalize it to trees of arbitrary degree. We also consider
the case K > 1, i.e., where more than one outgoing hotlink is allowed at each
node. Finally, in a dynamically changing environment, it may happen that after
enhancing the tree once with new hotlinks we wish to repeat the process again
and add additional hotlinks. In the full paper we show that our algorithm can
be extended to handle this setting as well, by handling tree-dags, namely, DAGs
created from a tree by adding only edges from a node to one of its descendants.
(Note that the DAG generated by applying our algorithm to a tree is indeed a
tree-DAG.)

Corollary 1. There exists a polynomial time algorithm for solving the hotlink
enhancement problem with known probability distribution on arbitrary degree n-
leaf tree-DAGs of depth O(log n) where every node can have up to K = O(1)
outgoing hotlinks.

3 Unknown Distribution

In this section we consider the case that the probabilities associated with each
leaf are not known to us. In this case, constructing the best set of hotlinks for the
instance at hand is out of the question. Nonetheless, it is possible to construct a
generic set of hotlinks that will guarantee a global upper bound of O(log n) on
the access cost. In fact, this can be achieved using a single hotlink per node.

We rely on the well-known fact that that given an n-node tree T , it is always
possible to find a separating node v, whose removal breaks the tree into subtrees
of size at most n/2. Using this fact, we define the hotlinks for our tree T rooted
at r as follows. Let wL and wR be r’s children in T . First, find a separator node
v for T as in the lemma, and add a hotlink from r to v. Next, generate hotlinks
for Tv, TwL

and TwR
by recursively applying the same procedure.

Letting f(n) denote the maximum root-to-leaf distance in an n-node tree with
hotlinks generated by the above procedure, we have to prove that f(n) ≤ c log n
for some constant c. This is established by noting that the construction guar-
antees that f(n) ≤ 1 + f(n/2). It follows that no matter what the probabilities
are, the resulting cost using this construction is always O(log n), namely, for any
n-node tree T , the algorithm described above constructs a hotlink function S
such that f̃(T, S) = O(log n). Thus we have:
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Theorem 2. The hotlink enhancement problem with (known or unknown) prob-
abilities has a polynomial time approximation algorithm with ratio O(log n).

We now prove a lower bound on the expected access cost under an unknown
probability distribution on the leaves. We assume that the tree T is ∆-ry, i.e., its
degree is at most ∆, for some constant ∆ ≥ 1, and that K hotlinks are allowed
from each node.

Observe that if there is a hotlink leading to some node w in T , then the
tree edge leading to w from its parent in T will never be used in a greedy route
to any leaf of Tw. This observation implies that for any set of hotlinks S, the
solution resulting from adding S to T is equivalent in cost to some (∆ + K)-ry
tree T ′ with no hotlinks at all. The tree T ′ can be obtained from the pair (T, S)
by performing the following modification, for each hotlink leading from v to w:
Eliminate the edge connecting w to its parent from the tree, and replace the
hotlink by a tree edge connecting v to w. Hence the cost of any solution using
up to K hotlinks on a ∆-ry tree is bounded from below by the cost of the best
solution using no hotlinks on a (∆ + K)-ry tree.

For an integer � ≥ 1, the maximum number of distinct leaves reachable from
the root in � steps on a (∆ + K)-ry tree is bounded by (∆ + K)�. This implies
that a solution S in which each of the n nodes is reachable by a path of length �
or less, i.e., with DS(v) ≤ �, must satisfy (∆+K)� ≥ n, or, � ≥ log n

log(∆+K) . Hence
for constant ∆ and K, � = Ω(log n). Using Lemma 1 we get

Theorem 3. (a) For any n-leaf ∆-ry tree T , if at most K hotlinks are allowed
from each node, then f̃(T ) = log n

log(∆+K) −1. In particular, for constant ∆ and K,

f̃(T ) = Ω(log n). (b) For bounded degree trees, the hotlink enhancement problem
with unknown probabilities and constant K has a polynomial time constant ratio
approximation algorithm.
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