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On Buffer-Economical Store-and-Forward Deadlock Prevention 
Baruch Awerbuch, Shay Kutten, and David Peleg 

Abstrucf- This note deals with store-and-forward deadlock 
prevention in communication networks. The approach we adopt is 
that of establishing buffer classes in order to prevent cyclic wait- 
ing chains. This type of solutions usually tends to require many 
buffers. The main contribution of the current note is in showing 
that the number of required buffers can be reduced considerably 
by employing a hierarchical organization of the network. The 
note proposes a new hierarchical scheme for arbitrary networks, 
that features a tradeoff between the communication overhead 
and the buffer requirements of the routing. This tradeoff can 
be shown to be close to optimal. 

I. INTRODUCTION 

VERCOMING store-and-forward deadlocks is one of 0 the major problems in the design of routing protocols 
for communication networks. Informally, a store-and-forward 
deadlock occurs at some set N of nodes when all the buffers 
of these nodes are full, and each of the messages occupying 
these buffers needs to be forwarded to some other node in 
the set N. Clearly, then, all of these messages are locked in 
a vicious circle, since the only way to forward a message 
is to have a free buffer in the next node on its route, and 
the only way to release a buffer is to forward the message 
currently occupying it. Avoidance or fast resolution of such 
store-and-forward deadlocks is essential for efficient utilization 
of available network resources. 

In this note we concentrate on one approach to deadlock 
prevention that has been extensively studied in the literature. 
This approach involves solutions based on dividing the buffer 
pool into buffer classes and utilizing these classes so as to 
prevent cyclic waiting chains [6], [lo], [13], [4]. Some of 
these solutions are based on restricting the family of allowed 
routes in order to avoid deadlocks. 

The problem addressed in this note involves two basic char- 
acteristics of deadlock prevention policies, namely, their buffer 
requirements and the quality of the allowed routes. In order 
to present the problem, let us compare these characteristics 
as manifested in routing schemes founded on two opposing 
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philosophies for buffer allocation proposed in the literature. 
The first philosophy, goveming the schemes of [7], [6] ,  
[lo], features complete independence of the network topology 
(except for knowing the network diameter 0). Generally 
speaking, schemes based on this philosophy do not interfere 
with the routing itself, and thus allow sending packets along 
shortest paths, for instance. However, at least cn buffers per 
node, for some constant c > 0, may be required in an n-vertex 
network. 

The opposite philosophy, taken for instance in [ 5 ] ,  is to 
make full use of knowledge of the network topology. A 
possible scheme based on this philosophy would be to restrict 
the routing to a tree spanning the network. 

This latter philosophy usually requires much fewer buffers. 
For instance, the tree scheme allows us to use only two buffers 
per vertex, one for inbound traffic and one for outbound 
traffic. However, this philosophy has two major disadvantages. 
The first is its sensitivity to topological changes. The second 
disadvantage is that it may require us to take routes that are 
sometimes far from optimal, even when the tree is carefully 
selected. For instance, suppose that the tree is a shortest-path 
tree, namely, a tree F rooted at some fixed vertex w with the 
property that for every other vertex w in the network G, the 
path from v to w in F is a shortest path in G. While this choice 
guarantees efficient routing to and from w, it may still happen 
that two other vertices w, w' end up using a path that is much 
longer than the shortest. In fact, when the edge lengths are 
allowed to vary arbitrarily, the ratio between the lengths of 
the paths connecting w to w' in the tree F and in the network 
G may be arbitrarily bad. Even when all edge weights are 
assumed to be equal, this ratio may be as bad as n - 1, as 
can be verified by considering the example of a network G 
whose topology is a ring. 

The problem we set out to investigate in this note is the 
possible tradeoff between the two extreme methods described 
above. Essentially, our results indicate that considerable sav- 
ings in buffer requirements can be achieved by making rela- 
tively modest compromises in the lengths of the routes. 

We follow the hierarchical paradigm advocated in [4]. (In 
fact, the notion of distinguishing routing within a tree from 
routing between trees is already present in [lo].) This approach 
has been proposed for networks that are originally structured 
in a hierarchical fashion, with communicating nodes naturally 
clustered into groups. The main technical novelty of our 
solutions is in proposing a method for covering an arbitrary 
network by a hierarchy of tree covers. Each level of the 
hierarchy provides a cover of the network, composed of a 
collection of (possibly overlapping) subtrees, whose union 
contains all the nodes of the network. Each of the covers 
has the additional property that a given node belongs to few 
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Communication Overhead Buffers per Nodes - 
r[Gop84,MSBO] O(1) o(n) 

Tree O(1) 
This paper O(knllk log D) . 

subtrees. The hierarchical decomposition makes no a priori 
assumptions on the structure of the network. The resulting tree 
cover is then used to design a deadlock-free tree-based routing 
scheme on each subtree, independently from all other subtrees. 

Our solution exhibits a tradeoff between the quality of the 
routing and the buffer requirements of the scheme. Using a k 
level hierarchy (with k 2 1 an integer parameter) yields routes 
that are at most 8k times longer than the optimal, and requires 
knllk logD(G) buffers per node, where D(G) denotes the 
diameter of the network G. 

A comparison between our method and various existing 
ones, based on the two philosophies discussed above, is 
given in Fig. 1. The communication measure represents mul- 
tiplicative overhead, i.e., the ratio between the amount of 
communication used for transmitting a message by the method 
at hand and the optimal communication cost. 

We would like to stress that the hierarchical approach 
described herein seems to be rather general, and has several 
other useful applications in the area of distributed network 
algorithms. For more on the hierarchical approach, related 
partitioning and covering techniques and various applications, 
see HI, [21, [81, U11, W I .  

11. DEFINITIONS 
We consider the standard model of a point-to-point com- 

munication network, described by an undirected graph G = 
(V, E) .  The vertices V represent the processors of the network 
and the edges E represent bidirectional communication chan- 
nels between the vertices. A vertex may communicate directly 
only with its neighbors, and messages between nonadjacent 
vertices are sent along some path connecting them in the 
network. 

We assume the existence of a weight function w: E + R+, 
assigning an arbitrary positive weight w(e) to each edge 
e E E. For two vertices u, w in a graph G let distG (u, w) 
denote the (weighted) length of a shortest path in G between 
those vertices, i.e., the cost of the cheapest path connecting 
them, where the cost of a path ( e l ,  . - e ,  e,)  is Cl<i5s w(ei). 

Let D = D(G) denote the diameter of the network, i.e., 
max,, V E ~  (dist(u, w)). For a vertex w E V, let R(w, G) = 
maxWEv (distG (0, w)). Let R(G) denote the radius of the 
network, i.e., minvEv (R(w, G)). A center of G is any vertex 
w realizing the radius of G (i.e., such that R(w, G) = R(G)) .  

1 2  3 4 5 6 7 8 9 10 

Fig. 2. The lower left comer of the 1 9 x  19 grid G19, and the neighborhoods 
Ni(3, 3) and N2(7, 7). 

Given two covers S = {SI,..., Sm} and 7 = 
{TI ,  . . . ,r}, we say that 7 coarsens S if each cluster 
of S is entirely "covered" by some cluster of 7, i.e., for 
every Si E S there exists a Tj E 7 such that Si E Tj. 

Denote the m - neighborhood of a vertex w by 

N,(w) = {w 1 dist (w, w) 5 m} .  

The m - neighborhood cower of the graph G is the collection 
of neighborhood clusters 

This is clearly a cover for G since, in particular, w E N,(w) 
for every w E V and m 2 0. The radius of " ( V )  is m. 

The construction relies heavily on the following lemma, 
proved in [2], [3]. 

Lemma 2.1 [2], [3]: Given a graph G = (V, E ) ,  IVI = n ,  
a cover S and an integer k 2 1, it is possible to construct a 
cover 7 that satisfies the following properties: 

1. 7 coarsens S, 
2. R ( 7 )  5 (2k - l )R(S) ,  and 
3. every vertex w E V occurs in at most [klSll/kJ clusters 

Example .- Consider the 19 x 19 grid G19 = ( y  E) ,  V = 
{(i, j )  I 1 5 i, j 5 19}, with each vertex connected to its 
(up to) eight neighbors (see Fig, 2). This network has n = 
361 vertices. Assume all edges have unit cost. Then NI(w), 
respectively, N~(w), consists of the 3 x 3 (resp., 5 x 5 )  subgrid 
centered at v (with the obvious modifications for vertices on 
the borders of the grid). For example, Fig. 2 describes also the 
1 -neighborhood Nl (3, 3) and the 2-neighborhood N2 (7, 7). 

Now consider the initial cover S = Nz(V). Note that in 
this cover, each vertex occurs in at most 25 clusters. Given a 
parameter k, our purpose is to find a cover 7 that coarsens S, 
such that the radius of clusters in 7 is at most (2k - l)R(S), 
and the number of 7 clusters in which any particular vertex 
occurs is at most LkISll/k]. For k = 2, S itself satisfies 
the requirements, since the desired bound on the number of 
occurrences is 1 2 m J  = 38. For k = 3, we need to find a 
coarsening cover 7 such that R ( 7 )  5 ( 2 . 3  - l )R(S)  = 10, 
and the number of 7 clusters in which any particular vertex 
occurs is at most 13 . 3611/3J = 21. A possible solution, 

of 7. 
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depicted by the four ovals in Fig. 3, is 

I = ( N ~ ( 6 i  + 1, 6 j  + 1) I 1 5 i ,  j 5 2) 

Note that this cover easily meets the requirement on the 
number of occurrences, and furthermore, its radius is only 6.  

111. TREE-COVER ROUTING 
In this section we present our routing policy and analyze 

its behavior. We first use Lemma 2.1 to construct our desired 
tree cover. 

Lemma 3.1 : For every undirected graph G(V, E )  and in- 
teger k > 1, it is possible to construct a tree cover, namely, 
a collection 3 k  of trees in G, that satisfies the following 
properties: 

1. For every two nodes u, w E V ,  there exists a tree 
F E 3 k  such that distF (u, w) 5 8k . distG (u, w), i.e., 
the distance between u and w in that tree is at most 8k 
times longer than their distance in the original graph. 

2. Every node belongs to at most [k - nilk . logD(G)1 
different trees in 3 k .  

Proof: Let S = [log D(G)1. The collection 3 k  consists 

is constructed as follows. We start by constructing the 22- 
neighborhood cover of G, S; = N2*(V) ,  and computing a 
coarsening cover Z for S; as in Lemma 2.1. Next, we select 
in each cluster T E Z a shortest-path tree F ( T )  rooted at 
some center of the cluster and spanning T .  Finally we set 

G = { F ( T )  I T E ?;}. 

The entire collection of trees is defined as 

of S sets of trees, denoted 3, i = 1, .... S. Each set 3 

6 

3 k  = UG. 
i=l 

Let us now prove the first claim of the lemma. Consider 
two nodes u, w E V ,  and suppose 2;-' < distG (u, w) 5 2i 
for some integer i > 1. By Property (1) of Lemma 2.1, 
there is a cluster T E Z such that Ni(w) & T ,  and hence 
u E T.  Consequently, the tree F ( T )  E 3; spans both u and 
v. Furthermore, since it is a shortest-path tree rooted at the 

Fig. 4. A shortest-path spanning tree for a cluster of the cover 7 on the 
grid Gig. 

center of the cluster T ,  its depth equals R(T),  the radius of 
T .  Consequently, it follows from Property (2) of Lemma 2.1 
that distF (u, w) 5 2(2k - 1)2; 5 8k . distG (u, w). 

Finally, the second claim of the lemma follows from Prop- 
erty (3) of Lemma 2.1, noting that [&[ = n. 

Example (continued) : The grid G19 described earlier 
(Fig. 2) has diameter 18. Consequently, the hierarchy requires 
five levels. Fix the parameter k = 3. Then in fact, all 
four highest levels of the hierarchy coincide, since the 
cover produced by our construction for all of these levels 
is identical, and consists of a single cluster covering the entire 
graph. Hence, any shortest-path spanning tree for the graph 
is appropriate as the single tree in 8 for i = 2, 3, 4, 5. 
Now consider the first level (i = 1). In this level, the cover 
selected for N l ( V )  may be 7 of the above example, and the 
tree collection 3; consists of four shortest-path trees, each 
spanning one of the four clusters depicted in Fig. 3. A possible 
tree for such a cluster is given in Fig. 4 

The construction of the above lemma is now used in order to 
set up our routing scheme, as follows. Given a parameter k, we 
first construct the tree cover 3 k  as in Lemma 3.1. At each node 
w we allocate two buffers for every tree F passing through 
the node. These buffers are called the inbound and outbound 
buffers of F ,  and are denoted by BI(w, F )  and Bo(w, F ) ,  
respectively. The first buffer is dedicated to message traffic 
towards the root of F ,  and the other to message traffic going 
away from the root. 

For every two nodes u, w in the network, we select the 
route connecting them in the tree F mutual to both of them, 
whose existence is asserted in Lemma 3.1. (In case there are 
several such trees, choose the one yielding the shortest route.) 
This route is composed of two segments: an inbound segment 
going from u towards the root of F ,  until hitting 1 = Z(u, w), 
the lowest common ancestor of u and w, and an outbound 
segment going from 1 towards w. A message traveling from u 
to w on this route uses the inbound buffers Bl(w, F )  at the 
nodes w it passes in the inbound segment. At 1, it switches 
from the inbound buffer BI(E, F )  to the outbound buffers 
Bo(1, F ) .  Finally, in the outbound segment, the message uses 
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Fig. 5. The tree F .  

Fig. 6. The associated component 23, of the buffer graph 23. 

the outbound buffers Bo(w, F). Collisions between message! 
occupying the same buffers are resolved by maintaining queue: 
and delivering messages in a FIFO order. 

Lemma 3.2 : The resulting routing scheme is starvation 
free, i.e., every message eventually arrives its destination. 

Proof: Consider the buffer graph B = (Vj, Ea) induce( 
by the construction. This is a directed graph that is defined a: 
follows. Its nodes are the buffers in the network, 

VB = {B1(w, F ) ,  Bo(w ,  F )  I w E v, F E 3 k l .  

The edge set Ea contains a directed edge from B to B’ if 
there is a route in which a message is moved from B to B 
in one of the steps along the route. 

Note that the buffer graph B is partitioned into connectec 
components induced by the collection of trees. Namely, fo 
each tree F in the collection 3 k 7  the buffers 

{ B I ( W ,  F ) ,  Bo(w, F )  I w E Fl 
form a connected component BF of B, with no directed edge; 
between any two components BF and BF‘ .  Moreover, b! 
definition of the routing scheme, the component BF is acyclic 
Fig. 5 and 6 depict a tree F and the associated component BE 
of the buffer graph, respectively. 

It follows that the entire buffer graph B is acyclic. Thi 
implies that the scheme is deadlock-free. The FIFO polic! 
for handling arriving messages guarantees progress, whicl 
completes the proof of the lemma. 
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Lemma 3.3 : The resulting routing scheme requires 2k . 
[nl /k  . logD(G)1 buffers per vertex and the routes are at 
most 8k longer than optimal. 

Proof: Follows from the construction and Lemma 3.1. 
Let us finally make a brief comment on the issue of handling 

faults. Our solution, as described, assumes a static network. In 
most existing networks, link failures are detected via time-outs 
of low-level data link protocols. This allows a “semi-static” 
approach to failures. Whenever the network topology changes, 
this fact is detected by the involved nodes, who then trigger 
the initiation of an adaptation stage, replacing the present 
(static) routing scheme with a new scheme consists with the 
current topology. In this sense, the situation is analogous to 
that of most common algorithms for routing and other topology 
sensitive tasks (cf. [9]), where the topological databases and 
delay estimates have to be recomputed periodically in an 
adaptive fashion. 

The covers required for setting up the tree collection 3 k  

can be constructed using the distributed clustering techniques 
of [I], in communication cost O(E . 1og4n). Since any 
topological change can completely change the distance metric, 
there is apparently no way to avoid this cost in the worst 
case. Further research is needed in order to develop efficient 
cluster updating methods, attempting to take advantage of 
the probable resemblance between the previous and current 
topology. 
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