Efficient On-Line Call Control Algorithms *

Juan A. Garay † Inder S. Gopal † Shay Kutten †
Yishay Mansour ‡ Moti Yung †

Abstract

We study the problem of on-line call control, i.e., the problem of accepting or rejecting an incoming call without knowledge of future calls. The problem is a part of the more general problem of bandwidth allocation and management. Intuition suggests that knowledge of future call arrivals can be crucial to the performance of the system. In this paper, however, we present preemptive deterministic on-line call control algorithms. We use competitive analysis to measure their performance—i.e., we compare our algorithms to their off-line, clairvoyant counterparts—and prove optimality for some of them.

The model we consider in this paper is that of a line of nodes, and investigate a variety of cases concerning the value of the calls. The value is accrued only if the call terminates successfully; otherwise—if the call is rejected, or prematurely terminated—no value is gained. The performance of the algorithm is then measured by the cumulative value achieved, when given a sequence of calls. The variety of call value criteria that we study—constant; proportional to the length of the call’s route; proportional to its holding time—captures many of the natural cost assignments to network services.

*A preliminary version of this paper appeared in Proc. 2nd Israel Symp. on the Theory of Computing and Systems, Natanya, Israel, June 1993.

†IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598.
‡Computer Science Department, Tel-Aviv University, Israel.
1 Introduction

High-speed networks (e.g., [13, 5, 9, 8]), as providers of multimedia services, will have to support a wide variety of traffic types. Each of these traffic types will have very different requirements in terms of required duration and throughput, and tolerable delay and message loss. Many of these requirements will only be met if bandwidth can be guaranteed for the individual connections in accordance with their requirement.

Thus, bandwidth reservation and management is a central issue in network control and operation. Roughly speaking, its objective is to maximize the usage of the network facilities, while minimizing the probability that a particular connection will be denied access to the network, or “blocked”. This issue is one of the most actively studied open problems in the area of high-speed networks. The nature of the problem is such that it is always possible to “second guess” decisions made in the past. In other words, a decision made previously to accept a connection\(^1\) may have been wrong because it caused a subsequent more “valuable” call to be rejected. Thus, the on-line nature of the problem, namely the fact that decisions are to be made when calls arrive into the system without knowledge of future arrivals, might lead to significantly lower efficiency than would have been possible with full off-line knowledge of the entire pattern of call arrivals.

This aspect of the problem leads naturally to the investigation of the issue of call pre-emption from an on-line perspective. In other words, if previous decisions were incorrect, it may pay to attempt to rectify them by preempting or removing a call in progress from the network. For example, if a high capacity call is blocked because of capacity used up by a low capacity call, it may be worthwhile to preempt the low capacity call and accept the high capacity call even at the risk of interrupting a call in progress.

In this paper we investigate this issue, i.e., we study call preemption algorithms in an on-line fashion. Generally speaking, an on-line problem is one in which an algorithm that solves it must handle a sequence of requests, satisfying each request without knowledge of the future requests. Examples of on-line problems include the scheduling of jobs on (parallel) machines, paging—i.e., the allocation of cache memory, the maintenance of dynamic data structures, network routing, etc.

We evaluate on-line algorithms in terms of their competitiveness (a measure introduced in [12], and thereafter intensively applied to various on-line settings). An algorithm is said to be \(c\)-competitive, \(0 < c \leq 1\), if its performance on any sequence of requests is within a factor \(c\) of the performance of any other algorithm on the same sequence, including the off-line, clairvoyant algorithms for the problem, which can “see” all future requests. A main virtue of an efficient competitive algorithm is its robustness, i.e., the fact that the algorithm works well for any distribution of the requests, and no assumptions need to be made about them. Another attractive aspect of on-line algorithms is their simplicity, since typically they do not involve heavy processing of past history. The bounds are sometimes best explained as a game between a player (the on-line algorithm) and an

\(^1\)We use the terms call or connection interchangeably.
adversary (the off-line algorithm), who makes part of the request sequence, observes the player's response to it, and then extends the sequence by producing more requests.

An initial study of the call control problem in an on-line fashion was presented by Garay and Gopal in [11]. The case studied there was the maximization of line utilization for a call value given by the call's holding time. They showed that if the holding times of the arriving calls is unknown, then competitiveness is not possible. Roughly speaking, this is so because the adversary can always orchestrate situations in which the algorithm, unaware of the calls' duration, ends up preempting (or rejecting) long-duration calls in favor of short ones, thus yielding an unbounded competitive ratio. It was also shown in [11] that if there is no penalty for preempting an existing call (e.g., the telephone company charges the customer according to the usage time, even if the call is disconnected), then an optimal 1-competitive algorithm exists. The case when there is a penalty for preempting a call (or more precisely, no value is accrued when a call is preempted) was left open.

This is one of the problems we address in this paper. Namely, we show that when the penalty for preemption is the call's holding time, then an optimal competitive algorithm exists. (This case makes sense in practice, as losing utilization implies the loss of service revenues.) In other words, our online algorithm can only gain if a call is completed, and does not accrue anything for a partial call. We also look at two other cases of value assignment to calls (constant, and proportional to the length of the call's route), and provide competitive algorithms for these cases as well. We believe that the variety of call values we cover captures the most natural cost assignments to network services.

In order to highlight the issues involved in the call control problem, our models simply consist of a collection of nodes—representing processors, transmission stations, gateways, etc.—interconnected by a communication line—a direct communication link, or more generally, a communication subsystem. The term “call” then refers to any communication application requiring a connection (and bandwidth) in an interval between two nodes. Clearly, our abstraction does not comprise a complete investigation of this on-line problem for general networks; we view our contribution as a step towards a better analytical understanding of call management in communication networks. Indeed, our work has spawned, directly or indirectly, a lot of interesting results; we mention some of these in Section 5.

1.1 Our Results

A communication network is a general graph, $G = (V, E)$, $|V| = n$. In this paper we assume that the routing for each call is defined by a process that is outside of the scope of the call control algorithm. We assume also that E is partitioned into a set of paths, or “lines.” The fixed tour taken by any communication application can then be viewed

2The holding time of a call is the time that elapses from its creation until it terminates. Although it is not always possible in reality for the algorithm to "know" this parameter at the time a call arrives, in many circumstances this information can be available, or estimated with overwhelming probability, from, for example, statistical history traces, the call type (e.g., voice, video), etc. In this paper we assume that the available estimates are correct.
as a collection of segments, each residing entirely on some line. We call a segment a
"call" or a "connection," and assume that the management of each line is performed
automatically. Thus, in each line calls "arrive" with some predefined bandwidth or
capacity and a predefined route—an interval within the line; this assumption gives a
simple enough environment to start investigating the involved issues of call control.

We use the notation \(c_i \) to indicate the \(i \)th call arrival. Each call \(c_i \) is determined
by the tuple \(< a_i, d_i, r_i, b_i > \), where \(a_i \) and \(d_i \) are the call's arrival and holding times,
respectively, \(b_i \) is the bandwidth, and \(r_i \) is the route (segment). The route \(r_i \) is an interval,
i.e., a set of consecutive edges \(\{ e_{i_1}, e_{i_2}, \ldots \} \) from the line. Without loss of generality, we
also assume bidirectional edges and capacity assignments. In general, each edge, \(e \in E \),
has a bandwidth \(B(e) \) associated with it. If a call is accepted into the system, it must
have the property that for each edge used by the call the sum of the bandwidth of all
the calls that share the edge must be less than the capacity of the edge. (This includes
the capacity of the newly added call.) Otherwise, the call must be rejected or some of
the preexisting calls preempted. In this paper we abstract out the conflict situation by
assuming that the bandwidth of an edge cannot accommodate more than one call at a
time, i.e., \(B(e) < b_i + b_j \) for all edges \(e \) and calls \(c_i, c_j \). For this reason we may assume
that \(B(e) = 1 \) for all edges and \(b_i = 1 \) for all calls.

For each call \(c_i \), we use \(\mathcal{P}_{c_i} \) to denote the set of calls that \(c_i \) preempts. With each call
\(c_i \) we associate a function \(\text{Val}(c_i) \), which yields a positive value if the call is allowed to
terminate, otherwise 0 (for example, telephone companies typically reimburse their cus-
tomers for disconnected calls; this is our penalty for preempting a call). The performance
of the algorithm is then measured by the value cumulatively achieved, when given any
(finite) sequence of calls.

In this paper we consider the following forms of \(\text{Val} \), and obtain the following corre-
sponding results:

- \(\text{Val}(c_i) = |r_i| \). I.e., the value is given by the number of edges of the call (in
our setting, this is equivalent to the total bandwidth requested by the call). The
network under consideration is a line of nodes, and we assume that both the holding
time and the arrival time for all the calls are the same. (This models the case
that the arrivals happened to be close, or that the calls all overlap in time.) We
give an algorithm that is \(\frac{1}{2g - 1} \) \(g \approx 0.24 \)-competitive, where \(g \) is the golden ratio
(i.e., \(g = \frac{1 + \sqrt{5}}{2} \approx 1.62 \)). This bound is optimal, as recently shown by Furst and
Tomkins [10].

- \(\text{Val}(c_i) = O(1) \). The value of a call is constant, and the network consists of a line
of processors. As in the previous case, we assume that both the holding time and
the arrival time for all the calls are the same. We give an algorithm that is \(O\left(\frac{1}{\log n} \right) \)-
competitive, and show optimality by providing a matching lower bound that holds
for any on-line algorithm.

- \(\text{Val}(c_i) = d_i \). I.e., the value to be achieved by the completion of the call is (pro-
portional to) the call's holding time. We assume in this case that an estimate of
{ Let c_{new} be the incoming call. }

if $\alpha \cdot f(c_{new}) > \beta \cdot h(P_{c_{new}})$ then

terminate($P_{c_{new}}$);
accept(c_{new})

else

reject(c_{new}).

Figure 1: The general form of the algorithms.

The holding times of each call is available at the call’s arrival time. The abstract scenario we consider here is that of two nodes connected by a single communication line. We give an algorithm that is $\frac{1}{4}$-competitive. Optimality follows from reducing our problem to a special machine scheduling problem, and applying the results of [7].

The general form of our algorithms for the three cases above is depicted in Figure 1, where α and β are constants and f and h are functions. The rest of the paper is dedicated to the different value criteria and to the corresponding choice of parameters α, β, f and h that would yield the competitive factors outlined above. Note that since we assume that no two calls can share a link, the set $P_{c_{new}}$ is unique, i.e. $P_{c_{new}}$ includes all the calls who share an edge with c_{new}.

We remark the simplicity of our control structure. This attractive property is crucial in high-speed network environments, where fast services are typically required.

2 Call Value is Length of Route

The model for this section is a network consisting of a line of nodes, and the value of a call is given by the number of links that it occupies, i.e., $\text{val}(c_k) = |r_k|$. This model captures situations in which the server provider charges proportionally to the distance of a connection, or to the total bandwidth allocated. We also assume that calls occupy consecutive links. In the case of non-contiguity, each segment is considered as a separate call. In this model, we will sometimes refer to r_k as c_k’s “interval” when it facilitates the reasoning. We will also refer to the number of links separating two calls as the “distance” between the calls.

As mentioned before, we assume that no two calls can occupy the same communication link. Naturally, we also assume that the size of the network is bounded (it can be easily
shown that competitiveness is not possible otherwise); alternatively, we can assume for the sake of analysis that there is an upper bound on $Val(c_k)$, for every c_k. We assume that all the calls have the same duration, one time unit, and that they all arrive at the same time, but still need to be handled in an on-line fashion, that is, the call control algorithm has to make the decision for a given call before the parameters of the next call are known.

We call this section’s algorithm IR (for length of route) and set $\alpha = 1$, $\beta = g$, where g is the golden ration (i.e., $g = \frac{\sqrt{5} - 1}{2}$), $f = Val$ and $h = \sum_{c_i \in P_{c_k}} Val(c_i) = \sum_{c_i < 0, r_i > e \in P_{c_k}} |r_i|$. In other words, algorithm IR compares the value of the incoming call to the total value of all the calls that are required to be preempted in order to accommodate this call. If the value of the new call is at least g times bigger than the value of the calls to be preempted, then the new call is scheduled and the existing calls terminated. The following theorem states the competitiveness of IR.

Theorem 2.1 Algorithm IR is $\frac{1}{2g+1}$-competitive.

Proof: First, consider all the calls that were completed by IR (the existence of such calls is guaranteed by the fact that the network is of finite size). For each such call c_k, we denote as $P_{c_k}^*$ the transitive closure of P_{c_k}, that is, the set of calls that c_k preempts, either directly or indirectly. Let I_{c_k} denote the interval (in communication links) that is the union of the routes of all the calls in $P_{c_k}^*$. We will show that the ratio between $|I_{c_k}|$ and $Val(c_k)$ is at most $1 + 2\beta$, and hence that the competitiveness of IR is at least $\frac{1}{2g+1}$.

We prove this by induction on the number of preemptions. The induction hypothesis is that if a call c_k is being served, and its interval is between “point” y and point $y + x$, then $I_{c_k} [y - x\beta, y + x + x\beta]$. The base of the induction is clear.

For the step of the induction, assume that c_k preempts a number of calls. Since c_k resides between y and $y + x$, it can preempt calls whose routes have a length of at most x/β. Thus, the calls that it preempts lie in the interval $[y - x/\beta, y + x + x/\beta]$. We now apply the induction hypothesis to the calls that c_k preempts. The length of these calls is at most x/β, so we get that I_{c_k} is a subinterval of $[(y - x/\beta) - \beta(x/\beta), (y + x + x/\beta) + \beta(x/\beta)]$. Since for the golden ratio $1/\beta + 1 = \beta$ holds, I_{c_k} is a subinterval of $[y - \beta x, y + x + \beta x]$, and we are done. \square

Regarding optimality for this algorithm, we first note that (the adversary’s behavior of) Theorem 4.2 can be easily adapted to hold for this model of call values given by the length of the routes. This yields a $\frac{1}{4} > \frac{1}{2g+1}$ competitiveness lower bound for this model. Recently, Furst and Tomkins have been able to close the gap, by providing a matching $\frac{1}{2g+1}$ lower bound [10].

3 Constant Call Value

In this section we consider the uniform value criterion, that is, a call value that is independent of the call’s distance and duration. The underlying network model and assumptions
are the same as in the previous section (a line of nodes of size \(n \)), but now every call carries the same constant value, i.e., \(\text{Val}(c_k) = a \) for all \(c_k \) and some \(a > 0 \). Without loss of generality, we will assume that \(a = 1 \). We call this section’s on-line algorithm \(CV \), for \textit{constant value}. We set \(\alpha = -1, \beta = -\frac{1}{2} \), \(f(c_k) = |r_k| \), and \(h = \max_{c_i \in \mathcal{P}_{c_k}} \{|r_i|\} \). In other words, \(CV \) compares the size of the interval that each incoming call \(c_k \) requests, \(|r_k| \), with the interval size of each of the calls that is required to be preempted in order to accommodate \(c_k \) (i.e., \(|r_i| \) such that \(c_i \in \mathcal{P}_{c_k} \)). If \(|r_k| \) is at most \(\frac{1}{2}|r_i| \), for each \(c_i \), then \(c_k \) is accepted, otherwise it is discarded.

The competitive factor of the algorithm we present is not a constant, but depends instead on the size of the network, although this dependence is only logarithmic. However, it turns out that this factor is optimal, i.e., no on-line algorithm for this model can compete better than ours.

We first give some definitions and prove some technical lemmas. As before, we resort to the transitive nature of preemption. We say that a call \(c_k \) \textit{transitively preempts} a call \(c_0 \) if there exist calls \(c_1, \ldots, c_{k-1} \) such that call \(c_i \) preempts call \(c_{i-1} \), for \(1 \leq i \leq k \). Note that for every call \(c \) that is preempted, there exists a call \(c' \) that transitively preempted \(c \) and was completed. We call \(c' \) the \textit{root} of \(c \).

Lemma 3.1 Let \(c \) be a call that was preempted according to algorithm \(CV \), and \(c' \) its root. Then the distance between \(c \) and \(c' \) is bounded by \(|r_{c'}| \).

Proof: Denote by \(c' = c_k, \ldots, c_0 = c \) the calls in the chain of preemption from \(c' \) to \(c \). Algorithm \(CV \) guarantees that the length of \(c_{i+1} \) is at most half the length of \(c_i \), i.e., \(|r_i|/2 > |r_{i+1}| \). Therefore, the sum

\[
\sum_{i=1}^{k-1} |r_i| < \sum_{i=1}^{k-1} 2^{-i}|r_0| < |r_0|
\]

To complete the proof, note that since it is the case that \(c_{i+1} \) preempted \(c_i \), their intervals must have intersected (the distance between them is 0). Thus, the distance between \(c \) and \(c' \) is bounded by the above sum. \(\square \)

We now say call \(c \) was \textit{rejected} due to call \(c' \) if when \(c \) was issued, call \(c' \) was being served, and \(c' \) was the reason that \(c \) was not accepted. (Note that a call may be rejected due to a unique call only.)

Lemma 3.2 Let \(c \) be a call that was rejected due to \(c' \). Then the distance between \(c \) and the root of \(c' \) is bounded by \(4 \cdot |r_c| \).

Proof: Since \(c \) was rejected because of \(c' \), \(|r_{c'}| < 2 \cdot |r_c| \). By Lemma 3.1 the distance between \(c' \) and its root is at most \(|r_{c'}| \), therefore the distance between \(c \) and the root of \(c' \) is at most \(2|r_{c'}| \), which in turn is bounded by \(4 \cdot |r_c| \). \(\square \)

We are now ready to establish the competitiveness of \(CV \).
Theorem 3.3 Algorithm CV is \(\frac{\log 5/4}{\log n} \)-competitive.

Proof: We would like to show that for any call the on-line algorithm completes, the off-line adversary can complete at most \(O(\log n) \) calls. This would establish our theorem.

Consider a call \(c_k \) that is completed by the on-line algorithm, and all the calls that it caused to be preempted (either directly or transitively). By definition, the completed call is the root of all the calls in this set. Now consider the calls that the adversary could have scheduled from this set of calls. Naturally, these calls are non-overlapping. By Lemma 3.2, the distance between each call \(c_i \) in the set and \(c_k \), the completed call, is at most four times its number of edges in \(c_i \).

The above reasoning can be formalized as the following game, which bounds the adversary’s strategy. Consider the interval \([0,n]\): How many subintervals can we fit in it such that the distance between each subinterval and its root is at most 4 times its length, and the size of each subinterval is at least one? Note that the adversary assignment obeys these criteria. (Also note that nothing can be gained by leaving gaps between subintervals, since we could then enlarge one of the subintervals, without adding any new conflict.) Thus, we have points \(x_0, \ldots, x_k \) satisfying \(0 \leq x_0 < \cdots < x_k \), \(x_{i+1} - x_i \geq 1 \), and \(x_i \leq 4 \cdot (x_{i+1} - x_i) \).

From the last inequality we get that \((5/4) \cdot x_i \leq x_{i+1}\), which implies \((5/4)^k \cdot x_1 \leq x_k\).

In addition, \(x_1 \geq 1 \), since each subinterval is of size at least one, and \(x_k \leq n \), since it has to fit in the interval \([0,n]\). This implies \((5/4)^k \leq n\), which in turn means that \(k \leq \log n / \log 5/4\).

Any set of calls that the adversary would choose would have to obey the above rule of the game. That is, for any sequence of \(X \) calls that the adversary would produce, algorithm CV will serve at least \(X \frac{\log 5/4}{\log n} \) calls, which completes the theorem. \(\square\)

We now show that CV is optimal for this model, by providing a matching lower bound for the competitive factor. We first prove two technical lemmas. The first one states that we can assume for our purposes that an on-line algorithm always preempts an existing call whenever a shorter, overlapping call arrives.

Lemma 3.4 Let \(c \) be a call being served, and \(c' \) an incoming call such that \(r_{c'} \subset r_c \). Then an on-line algorithm that preempts \(c \) and accepts \(c' \) is at least as competitive as an algorithm that rejects \(c' \).

Proof: Consider any on-line algorithm that does not behave according to the statement of the lemma, that is, it does not preempt an existing call whenever a shorter, overlapping call arrives. Consider the last time in a given sequence of calls in which the algorithm does it. We introduce a modification, by preempting the call being served and scheduling the incoming call instead. Note that with the modification the request sequence remains valid (i.e., we did not introduce any new conflicts), and that the new cumulative value remains the same. The first claim is true, since only a subset of the links used by the original algorithm are used now; the second claim holds since we deleted
one call and added another call, and all calls are of the same value. Since we have not introduced any new conflicts, the above will remain true until the final state. We finish the proof by iteratively applying the above reasoning to the modified sequence. In the final sequence a shorter, overlapping call, is always accepted, and its value is no worse than the original sequence's, yielding the lemma.

The next lemma shows that we can assume, without loss of generality, that an on-line algorithm will accept an incoming call that does not overlap with any existing call.

Lemma 3.5 An on-line algorithm that accepts an incoming call that does not overlap with any existing call is at least as competitive as an algorithm that rejects it.

The proof of the lemma follows immediately, since the algorithm can always preempt the call under consideration in the future. We now prove that, for any on-line algorithm for this model, there exists a call sequence for which the algorithm is able to complete just one call, while the off-line algorithm completes Ω(log n) calls. This makes algorithm CV optimal.

Theorem 3.6 In the line model, when the value of the calls is constant, any on-line call control algorithm has a competitive factor of at most \(\frac{1}{\log n} \).

Proof: Consider an on-line algorithm that, without loss of generality, behaves according to Lemmas 3.4 and 3.5. Let the number of the nodes in the network be a power of 2, i.e., \(n = 2^k \), for some \(k \), and denote the nodes by \(1, \cdots, n \). The adversary generates the following sequence: It starts with two calls, one from \(1 \) to \(n/2 + 1 \) and the other from \(n/2 \) to \(n \). The two calls intersect on the link \((n/2, n/2 + 1) \), and therefore only one of them can be accepted. (By Lemma 3.5 at least one of them is accepted.) Without loss of generality, assume that the online algorithm accepts the call from \(1 \) to \(n/2 + 1 \). The adversary then accepts the call from \(n/2 \) to \(n \), and continues recursively to generate calls in the interval \(1 \) to \(n/2 \). Note that this interval does not intersect with the call that the adversary has accepted. Lemma 3.4 guarantees that when new calls appear that are subintervals of \((1, n/2 + 1) \), occupied by the call the on-line algorithm is running, then the algorithm will preempt this call, and continue with the new calls. The recursion ends with calls that require two links.

Hence, we have shown that for any on-line algorithm, for a network of size \(2^k \), there is a sequence of calls in which the algorithm completes only one call, while the adversary is able to complete \(k \). This completes the proof of the theorem.

4 Call Value is Holding Time

In this section the abstract scenario is that of two nodes connected by a communication line such that no two calls can be accommodated at the same time. The calls' value is given by their holding time, i.e., \(\text{Val}(c_t) = d_t \), for each call \(c_t \). Again, a call that is
prematurely terminated yields no value. In this context, \(P_{\text{new}} = \{c_{\text{old}}\} \), the existing call. We set \(\alpha = 1, \beta = 2 \) and \(f = g = \text{Val} \). Namely, the algorithm—which we call HT, for holding time—accepts an incoming call only if its (estimated) holding time is more than twice the holding time of the existing call. (The parameters used for this case gives an algorithm very similar to the one designed independently for a certain scheduling problem in [7].) We remark that our analysis applies to time intervals of finite duration, since no on-line algorithm can guarantee a competitive factor with respect to time intervals of infinite duration.

Theorem 4.1 Algorithm HT is \(\frac{1}{4} \)-competitive.

Proof: Given a finite time interval, consider all the calls that were completed by HT. For each such call \(c_k \), with, say, \(d_k = l \), let again \(P^*_{c_k} \) be the transitive closure of \(P_{c_k} \), that is, the set of calls that \(c_k \) preempted, either directly or indirectly (i.e., by a call already in \(P^*_{c_k} \)), and let \(I_{c_k} \) be the time interval that is the “union” of the time intervals corresponding to all the calls in \(P^*_{c_k} \). The following observations are used:

1. \(|I_{c_k}| < l \cdot \sum_{i=0}^{k-1} \frac{1}{2^i} \);
2. HT will not accept an additional call \(c_{k+1} \) of duration up to \(2l \).

An off-line algorithm could have accepted a sequence of “short,” non-overlapping calls that can be superimposed to the above-described sequence, thereby covering the whole interval \(I_{c_k} \) (whose duration is at most \(l \)), the call \(c_k \) (whose duration is \(l \), and the calls that \(c_k \) cause to reject (whose duration is at most \(2l \)). This implies that while HT has accrued \(l \), the offline may accrue at most \(4l \), which completes the proof of the theorem. □

The next theorem shows that the performance achieved by HT is optimal.

Theorem 4.2 When the call value is given by the call’s holding time, there does not exist an on-line call control algorithm with a competitive factor greater than \(\frac{1}{4} \).

The theorem follows from the lower bound derived by Baruah et al. [7] for the related on-line scheduling problem in the presence of overload. We refer the reader to [7] for details.

5 Final Remarks

In this paper we study the problem of preemptive call control in an on-line fashion for a variety of call value criteria. We provide algorithms that are competitive; furthermore, these algorithms are shown to be optimal.

Our work has, directly or indirectly, motivated a number of recent interesting works. One immediate direction is investigating the problem in other network topologies. This
has been addressed by Awerbuch, Bartal, Fiat and Rosén in [3], where they give a competitive (randomized) algorithm for non-preemptive call scheduling on tree networks. Awerbuch, Gawlick, Leighton and Rabani [4] have considered also non-tree networks, such as meshes. Awerbuch, Azar and Plotkin [1] provide a competitive call control strategy for general networks if the profit of a call is proportional to the bandwidth-duration product. Awerbuch, Azar, Plotkin and Waarts [2] study the case of unknown call duration, and show how to achieve competitiveness by allowing rerouting of the calls. More recently, Bar-Noy, Canetti, Kutten, Mansour and Schieber [6] have considered the problem where the bandwidth requirement is general, but impose the restriction that the maximum bandwidth required by a single call is at most a constant fraction (say, half) of the link capacity. For this model they present constant-competitive algorithms.
References

