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ABSTRACT

Work on using relevance feedback for retrieval has focused
on the single retrieved list setting. That is, an initial docu-
ment list is retrieved in response to the query and feedback
for the most highly ranked documents is used to perform
a second search. We address a setting wherein the list for
which feedback is provided results from fusing several in-
termediate retrieved lists. Accordingly, we devise methods
that utilize the feedback while exploiting the special char-
acteristics of the fusion setting. Specifically, the feedback
serves two different, yet complementary, purposes. The first
is to directly rank the pool of documents in the interme-
diate lists. The second is to estimate the effectiveness of
the intermediate lists for improved re-fusion. In addition,
we present a meta fusion method that uses the feedback
for these two purposes simultaneously. Empirical evaluation
demonstrates the merits of our approach. As a case in point,
the retrieval performance is substantially better than that
of using the relevance feedback as in the single list setting.
The performance also substantially transcends that of a pre-
viously proposed approach to utilizing relevance feedback in
fusion-based retrieval.

Categories and Subject Descriptors: H.3.3 [Information Search
and Retrieval]: Relevance feedback, Retrieval models

Keywords: fusion, relevance feedback

1. INTRODUCTION
It is a well-established fact that using (positive) relevance

feedback in ad hoc retrieval helps to substantially improve
retrieval effectiveness [29, 30]. Usually, relevance feedback, if
available, is provided for the documents most highly ranked
by some initial search performed in response to the query.
Then, information induced from the feedback documents is
used for a second retrieval.

Here we address the challenge of utilizing relevance feed-
back in fusion-based retrieval [12]. That is, the document
list for which feedback is provided results from merging (fus-
ing) several intermediate lists that were produced using dif-
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ferent retrievals from the same corpus in response to the
query. Thus, our main goal is to address the questions of
whether and how relevance feedback can be effectively uti-
lized while accounting for the special characteristics of the
fusion setting. Furthermore, we opt for an approach that is
not committed to a specific retrieval framework (e.g., vector
space, language modeling) as we operate in a fusion setting.

We present retrieval methods that use the relevance feed-
back for two different, yet complementary, purposes. The
first is to directly rank the pool of documents in the inter-
mediate lists. The second is to estimate the effectiveness
of the intermediate lists so as to re-fuse them. Several list-
effectiveness estimates are proposed based on the observa-
tion that this is essentially an evaluation task with minimal
(incomplete) relevance judgments. To simultaneously lever-
age both purposes just described, we present a meta fusion

method. The method fuses the direct ranking induced over
the pool with that created by the re-fusion of the interme-
diate lists.

Empirical evaluation performed with TREC corpora at-
tests to the merits of our approach. Specifically, the retrieval
performance is substantially better than that attained by
treating the relevance feedback as in the standard single re-
trieved list setting; i.e., disregarding the fact that the list for
which feedback is provided results from fusing intermediate
lists. Furthermore, our approach is substantially more effec-
tive than the only previously proposed method to utilizing
relevance feedback in fusion-based retrieval [4].

2. RELATEDWORK
There is a large body of work on using relevance feedback

for retrieval [29, 30, 9]. In contrast to our work, the fusion-
based retrieval setting has not been specifically addressed,
with the exception of some work which is discussed below.
As already noted, we show that leveraging the special char-
acteristics of the fusion setting when utilizing the relevance
feedback is of much merit.

There has been much work on fusing document lists that
were retrieved from the same corpus in response to a query
(e.g., [7, 14, 21, 22, 28, 36, 2, 12, 3, 10, 26, 39, 5, 23, 32,
6, 31, 38]). However, to the best of our knowledge, there
has only been a single report on using relevance feedback in
a fusion-based retrieval setting [4]. A fusion method served
for active feedback, that is, selecting documents to be judged
by the user through an iterative process. We do not address
the active feedback task. However, as a fusion approach that
utilizes a feedback set of documents was proposed, specifi-
cally, to estimate list effectiveness for re-fusion [4], we use
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this work for reference comparison. The list-effectiveness
estimate proposed in this work [4] is different than those
we present here. Furthermore, in contrast to our approach,
the feedback was not used to directly rank documents in
the intermediate lists. Accordingly, the integration of the
two purposes that the feedback can be used for — direct
ranking and list-effectiveness estimation for re-fusion — is
not proposed in contrast to our work. In Section 4.2.4 we
empirically show that our approach is substantially more
effective in utilizing the relevance feedback.

In work on fusion, the intermediate retrieved lists (or seg-
ments thereof) were weighted (i) uniformly (which is the
most common case), (ii) using unsupervised approaches [39,
38], or (iii) based on past performance of the retrieval method
as determined using a train set of queries [7, 2, 23, 32, 6,
31]. In Section 4.2.5 we demonstrate the relative merits of
using our proposed list-effectiveness estimates which utilize
relevance feedback to weight the lists.

3. RETRIEVAL FRAMEWORK
Let q and D be a query and a corpus of documents, re-

spectively. Suppose that the documents lists L1, . . . , Lm,
each composed of n documents, were retrieved from D in
response to q by m different retrievals. These can be based,
for example, on different query representations, document
representations, and ranking functions [12]. In what follows
we use the notation d ∈ L to indicate that document d is in
the list L; SL(d) is d’s normalized (non negative) score in

L; if d 6∈ L, we set SL(d)
def
= 0. Details regarding the score

normalization approach are provided in Section 4.1.
The goal of fusion methods is to merge the lists into one

result list, Lfuse. For example, the CombSUM method [14]

scores d by SCombSUM (d)
def
=

P

Li:d∈Li
SLi(d). Thus, docu-

ments that are ranked high in many of the lists are rewarded.
The CombMNZ method [14, 22] further rewards documents

that appear in many of the lists: SCombMNZ(d)
def
= |{Li :

d ∈ Li}|SCombSUM (d).

3.1 Using Relevance Feedback
As in previous work on using relevance feedback [30, 9], we

assume that a user scans the list she is presented with, Lfuse

in our case, top down until she encounters r documents that
are relevant to the information need she expressed using the

query q. We use R
[r]
q (Lfuse) (henceforth Rq) to denote the

set of these relevant documents, and F (Lfuse) to denote
the set of all documents she scanned and therefore judged;
i.e., F (Lfuse) \ Rq are the non-relevant documents the user
encountered. We note that the user need not be aware of
the fact that the result list she scans (Lfuse) was produced
by fusing intermediate lists. Our goal is to devise retrieval
methods that use information induced from F (Lfuse).

Several of the approaches that we present use some query
expansion method. The method takes as input several doc-
uments — the relevant ones (Rq) in our case — the query
q, and some corpus-based term statistics. The method then
produces a query model, Mq;Rq , that can be used to rank
documents; the score assigned to document d is S(d;Mq;Rq ).
For example, in Rocchio’s method [29], the query model is a
tf.idf-based vector where cosine is often used as the scoring
function. In the mixture model [41] and relevance model
[20] approaches, the query model is a unigram language
model; documents are ranked by the cross entropy between

the query model and their language models. In Section 4.1
we provide the details of the query expansion method used
for experiments. We hasten to point out that our methods
are not committed to a specific query expansion approach.

Following standard practice in work on utilizing relevance
feedback [30], we can use Mq;Rq to rank the entire cor-
pus; CorpusRank denotes this approach. We also study a
method, FusedListReRank, which uses Mq;Rq to re-rank
Lfuse rather than to rank the entire corpus.

However, CorpusRank and FusedListReRank do not ac-
count for the special characteristics of the retrieval setting
we address here. That is, the fact that the list Lfuse, for
which relevance feedback is provided, results from fusing in-
termediate retrieved lists. The methods we present below
do exploit this fact.

3.2 Exploiting the Special Characteristics of
the Fusion Setting

We start with the simple observation that fusion-based re-
trieval is a two steps procedure. First, a pool of documents,

Dpool
def
=

S

i
Li, is created by the different retrievals. Then,

list-specific properties of documents in the pool (e.g., docu-
ment scores in the lists) are used to rank the pool. Accord-
ingly, we devise methods that rank Dpool using the relevance
feedback. Following common practice in work on fusion [12],
documents not in the pool are assigned with a zero score in
all methods.

Our first method, PoolRank, ranks Dpool using the query
model Mq;Rq which was induced from the relevant docu-
ments and the query:

SPoolRank(d)
def
= S(d;Mq;Rq ). (1)

The pool contains documents “considered” relevant by re-
trievals which were based only on the query. Thus, using
information induced from relevant documents to re-rank it
can potentially improve retrieval effectiveness.

Our second method, ReFuse, uses the relevance feedback
to weight the intermediate lists Li so as to re-fuse them. The
development of ReFuse is guided by probabilistic retrieval
principles as described next.

The goal of probabilistic retrieval methods is to estimate
the probability p(d|Iq) that d is relevant to the information
need Iq expressed by q. Relevance is determined with re-
spect to the information need rather than with respect to
the query which is a signal about the information need.

To estimate p(d|Iq) using information induced from the
intermediate lists, and inspired by some recent work on pre-
dicting query-performance for fusion [25], we can write

p(d|Iq) =
X

Li

p(d|Iq, Li)p(Li|Iq), (2)

if we assume that p(Li|Iq) is a probability distribution over
the intermediate lists.

Following common practice in work on aspect and mix-
ture models [16], we first make the assumption that d is
independent of Iq given Li. Then, we get the estimate

p̂(d|Iq)
def
=

X

Li

p̂(d|Li)p̂(Li|Iq), (3)

where p̂ denotes an estimate for p. That is, the probability
that d is relevant to Iq is estimated based on estimates for
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its association with the intermediate lists (p̂(d|Li)); the im-
pact of a list Li depends on its effectiveness (relevance) with
respect to Iq (p̂(Li|Iq)). Thus, Equation 3 reflects a transi-
tion from using q as an explicit signal about Iq to using the
intermediate lists that were retrieved in response to q as a
pseudo signal about Iq.

The mixture model just described is the conceptual ba-
sis of linear fusion methods [2].1 For example, the Comb-
SUM method [14], which was mentioned above, is a lin-
ear fusion method: normalized document scores in the lists
serve for list-association measures (p̂(d|Li)); and, uniform
list-effectiveness estimates (p̂(Li|Iq)) are used.

In the absence of relevance feedback, estimating the ef-
fectiveness of the intermediate lists is a difficult task [2,
39]. However, here, some relevance feedback is provided,
although for the fused list Lfuse and not for the intermedi-
ate lists. In Section 3.2.1 we present a few measures that
use this relevance feedback to estimate the effectiveness of
the intermediate lists. Using these estimates in the linear
fusion framework results in our ReFuse method that scores
d (∈ Dpool) by:

SReFuse(d)
def
=

X

Li:d∈Li

wIq (Li; F (Lfuse))SLi(d); (4)

wIq (Li; F (Lfuse)) is Li’s estimated effectiveness with re-
spect to Iq; and, d’s score in Li, SLi(d), serves as the document-
list association measure as in CombSUM.2

Meta Fusion. The relevance feedback served two different
purposes in the PoolRank and ReFuse methods; namely, to
directly rank the pool and to estimate the effectiveness of
the intermediate lists so as to re-fuse them, respectively. We
next integrate these approaches.

Instead of making the independence assumption that led
from Equation 2 to Equation 3 — i.e., that d is independent
of Iq given Li — we estimate p(d|Iq, Li) using λ ˆ̂p(d|Iq)+(1−

λ)p̂(d|Li); ˆ̂p(d|Iq) is some estimate for p(d|Iq); λ is a free
parameter. Using the estimate for p(d|Iq, Li) in Equation
2, applying some algebra, and using the assumption from
above that p(Li|Iq) is a distribution over the intermediate
lists, we derive a new estimate for p(d|Iq):

λ ˆ̂p(d|Iq) + (1 − λ)
X

Li

p̂(d|Li)p̂(Li|Iq). (5)

This estimate“backs off”from some direct estimate (ˆ̂p(d|Iq))
to the mixture-based estimate from Equation 3.

For the direct estimate, ˆ̂p(d|Iq), we use the normalized

score assigned by PoolRank to d: SP oolRank(d)
P

d′∈Dpool
SP oolRank(d′)

.

This is a probability distribution over the entire corpus as
documents not in Dpool are assigned with a 0 score. The
resultant estimate is based on using the query model Mq;Rq ,
which was induced from the relevant documents and used in
PoolRank for ranking, as a representation for Iq.

Then, following Equation 5 we interpolate the direct esti-
mate just described with the normalized score assigned by

1We write“conceptual”to emphasize the fact that the actual
measures that are used in work on linear fusion methods are
not necessarily valid probability distributions [2].
2Document d is associated only with lists in which it ap-

pears, because SLi(d)
def
= 0 if d 6∈ Li.

ReFuse to d: SReF use(d)
P

d′∈Dpool
SReF use(d′)

. This is a distribution

over the entire corpus which is based on the linear mixture
model described in Equation 3. Accordingly, we arrive to
our MetaFuse method that scores d by:3

SMetaFuse(d)
def
= λ

SPoolRank(d)
P

d′∈Dpool
SPoolRank(d′)

(6)

+ (1 − λ)
SReFuse(d)

P

d′∈Dpool
SReFuse(d′)

.

The name MetaFuse is coined based on the following ob-
servation. The PoolRank method induces a ranking over
Dpool using Mq;Rq . This ranking is essentially linearly fused,
using Equation 6, with a second ranking of Dpool which was
created by ReFuse. The ReFuse ranking is by itself the re-
sult of linearly fusing the rankings of the intermediate lists
L1, . . . , Lm using list-effectiveness estimates in Equation 4.

For λ = 1 and λ = 0, MetaFuse becomes PoolRank and
ReFuse, respectively. More generally, the higher the value
of λ, the more weight is put on the ranking produced by
using the query model that was induced from the relevant
documents. Lower values of λ result in more emphasis on
the re-fusion of the intermediate lists that are weighted using
information induced from the feedback documents.

3.2.1 Estimating list effectiveness

We now turn to address the task of estimating the ef-
fectiveness of an intermediate retrieved list Li with respect
to Iq using the feedback document set, F (Lfuse). The es-
timate, denoted wIq (Li; F (Lfuse)), is used in Equation 4
for the ReFuse method, which is then used in MetaFuse in
Equation 6.

It is important to note that documents in Li, even if are
relevant, might not be among those for which relevance feed-
back is available. Recall that the relevance feedback was
provided for the documents most highly ranked in the fused
list Lfuse. Thus, the challenge is estimating retrieval effec-
tiveness with incomplete (minimal) relevance judgments.

The first list-effectiveness estimate that we consider is the
standard average precision measure, AP. AP is computed
using the feedback set, F (Lfuse), and treats unjudged doc-
uments — i.e., those not in F (Lfuse) — as non relevant.

To address the scarcity of relevance judgments in our set-
ting, we also consider infAP [40]. This is a state-of-the-art
retrieval effectiveness measure that was designed as an ap-
proximation to average precision (AP); specifically, for cases
of incomplete relevance judgments. An important difference
between infAP and AP is that the former differentiates be-
tween unjudged and non-relevant documents and the latter
does not. We compute infAP based on the feedback set
F (Lfuse). Documents not in F (Lfuse) are treated as un-
judged. For comparison purposes, we also consider a variant
of infAP, termed infAPonlyRel, which is computed using
only the set of relevant documents, Rq; i.e., all other docu-
ments are treated as unjudged.4

3Experiments — actual numbers are omitted as they con-
vey no additional insight — showed that using a weighted
geometric mean of the normalized scores of PoolRank and
ReFuse yields performance that is very similar to that of
using the weighted arithmetic mean from Equation 6.
4We note that in contrast to the case for the original set-
ting in which infAP was introduced [40], here infAP is not
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It is worth noting at this point that we could have poten-
tially used information induced from the non-relevant doc-
uments (F (Lfuse) \ Rq) to also improve the query model,
Mq;Rq , which is used in PoolRank. However, utilizing neg-
ative feedback to improve retrieval performance has long
been known as an extremely hard task [17, 29, 37] with the
potential merits confined to very difficult queries [37, 18].

The development of the third and fourth list-effectiveness
estimates, referred to as Kendall-τ and Pearson, is in-
spired by work on query-performance prediction [33]. The
query model, Mq;Rq , which was induced from the relevant
documents, is used to re-rank Li; the re-ranked list is de-
noted ReRank(Li). As Li was not created using relevance
feedback, it is presumably less effective than ReRank(Li).
Consequently, the latter can serve as a positive reference
comparison to the former for estimating effectiveness [33];
i.e., we assume that the more similar the rankings of Li

and ReRank(Li), the higher the effectiveness of Li. We
use Kendall’s-τ and Pearson’s correlation coefficient to mea-
sure the similarity between Li and ReRank(Li). While
Kendall’s-τ is based on document ranks, Pearson’s correla-
tion coefficient depends on document scores. As the values
assigned by the two measures are in [−1, 1] we shift and
re-scale them to [0, 1] for consistency with the estimates de-
scribed above. The resultant values serve as Li’s effective-
ness estimates.

4. EVALUATION

4.1 Experimental Setup
The methods we presented in Section 3 utilize relevance

feedback. The feedback is provided for the documents at
the top ranks of a result list which is produced by fusing
several intermediate retrieved lists. Thus, to evaluate the
effectiveness of the methods, we use runs submitted to dif-
ferent tracks of TREC as the intermediate lists.

Table 1 provides the details of the TREC tracks used for
experiments. We used the ad hoc tracks of TREC3, TREC7
and TREC8, and the Web track of TREC9. These were also
used in prior work on fusion [3, 26, 4, 5, 23, 32, 19]. We ran-
domly sample 5 runs from all those submitted to a track and
which contain at least 100 documents as a result for every
query. (We refer to these runs as candidates in Table 1.) We
use 30 such random samples; each sample constitutes an ex-
perimental setting. The retrieval effectiveness numbers that
we report are averages over these 30 samples (settings). The
n = 100 most highly ranked documents in a run per query
serve for an intermediate retrieved list.5 Retrieval scores in
the lists are min-max normalized [22, 27, 24]. Then, the five
lists for each query are fused using the CombMNZ method
[14, 22], which was described in Section 3. CombMNZ is a
highly effective fusion approach that commonly serves as a
baseline in work on fusion [3, 26, 23, 32, 19].

To create the set of feedback documents, F (Lfuse), we
scan the list Lfuse which was produced by CombMNZ top
down until r relevant documents are accumulated or the

necessarily a statistical estimate for AP. Yet, the empirical
results presented in Section 4.2 attest to the merits of using
infAP as a list effectiveness estimate in our setting.
5It was argued, based on the “skimming effect” principle [2],
and empirically demonstrated [34, 35, 8, 19], that there are
clear merits in fusing relatively short lists.

TREC Data Queries # of candidate runs

TREC3 Disks 1&2 151-200 38
TREC7 Disks 4&5-CR 351-400 86
TREC8 Disks 4&5-CR 401-450 113
TREC9 WT10G 451-500 64

Table 1: TREC data used for experiments. Candi-
date runs are those that contain at least 100 results
for every query.

end of the list is reached.6 F (Lfuse) is the set of docu-
ments scanned. Documents in F (Lfuse) are either relevant
or non-relevant as determined by using TREC’s qrels files.
(Documents in F (Lfuse) with no judgement in the qrels file
are considered not relevant as is standard.) The set of rele-
vant documents in F (Lfuse) was denoted Rq in Section 3.1.
We present results for r ∈ {1, . . . , 5}.

Titles of TREC topics serve for queries. Tokenization and
Porter stemming were applied to queries and documents us-
ing the Lemur toolkit7 which was used for experiments.

Query expansion method. As described in Section 3, a
few of our approaches use some query expansion method.
The method produces a query model Mq;Rq that can be
used for ranking. For experiments we use the effective rele-
vance model number 3 (RM3) [20, 1] as the query expansion
method. When using relevant documents to construct RM3,
which is a unigram language model, the probability assigned
to term w is [20, 1]: (1 − α)p(w|q) + α

r

P

d∈Rq
p(w|d); α is

a free parameter; p(w|q) is the maximum likelihood esti-
mate of term w with respect to q; p(w|d) is the probability
assigned to w by a Jelinek-Mercer smoothed unigram lan-
guage model induced from document d with smoothing pa-
rameter γ [20]; γ = 0.1 following previous recommendations
[20]. It is common practice [1] to clip the relevance model
by using only the δ terms to which it assigns the highest
probability; these terms’ probabilities are sum-normalized
to yield a valid probability distribution. To rank documents
using RM3, we use the cross entropy between the relevance
model and their (smoothed) unigram language models [20].
To this end, we use Dirichlet smoothed document language
models with the smoothing parameter set to 1000 [41]. We
note that RM3 interpolates the query language model with
a linear mixture of the language models of the given relevant
documents. Therefore, it is the language-model-based ana-
logue of Rochhio’s method [29, 20]. The latter interpolates
the query vector with the centroid (i.e., linear mixture) of
the vectors of relevant documents.

Evaluation metrics. To evaluate retrieval effectiveness, we
use the mean average precision at cutoff n = 100 (MAP@100),
which is the size of the intermediate lists that are fused, and
the precision of the top 10 document (p@10). Statistically
significant differences of performance are determined using
the two-tailed paired t-test computed at a 95% confidence
level based on the average performance per query over the
30 samples of runs.

6In the very few cases (specifically, 0.8% of the cases for
TREC9) that fusing a sample of 5 lists (for a specific query)
results in a list with no relevant documents, we omit this
sample.
7www.lemurproject.org
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TREC3 TREC7 TREC8 TREC9
r=1 r=2 r=1 r=2 r=1 r=2 r=1 r=2

MAP p@10 MAP p@10 MAP p@10 MAP p@10 MAP p@10 MAP p@10 MAP p@10 MAP p@10

CombMNZ 20.3 69.3 20.3 69.3 21.1 53.7 21.1 53.7 23.9 54.3 23.9 54.3 19.8 35.2 19.8 35.2

CorpusRank 22.6 72.8 24.9 77.5 22.8 56.9 25.1 60.9 25.2 58.8 27.2 61.6 28.0 42.2 33.2 47.8

FusedListReRank 22.5 76.1c 23.4c 78.8 22.8 57.3 24.2 60.6 25.2 59.6 26.5 61.6 27.3 43.6 31.5c 47.8

PoolRank 24.1cf 75.1c 25.6cf 78.2 23.4c 57.1 25.4f 60.8 25.9c 59.4 27.6f 61.8 28.8f 43.9 33.5f 48.4

ReFuse 20.2cf
p 68.4cf

p 20.8cf
p 70.3cf

p 22.1 56.5 22.7f
p 57.7 25.4 56.9f 26.0p 58.2cf

p 22.6cf
p 38.1f

p 23.4cf
p 39.5cf

p

MetaFuse 24.9
cf
pr 76.2

c
r 26.0

cf
pr 79.0r 25.1

cf
pr 59.3

cf
pr 27.3

cf
pr 63.3

cf
pr 27.8

cf
pr 60.9r 29.2

cf
pr 63.8

cf
pr 29.3

cf
r 44.8r 33.6

f
r 48.5r

Table 2: Main result table. Boldface marks the best result in a column. Italics marks performance that
is statistically significantly better than that of CombMNZ. ’c’, ’f ’, ’p’ and ’r’ mark statistically significant
differences with CorpusRank, FusedListReRank, PoolRank and ReFuse, respectively.

An important question in evaluating the retrieval effec-
tiveness of methods that utilize relevance feedback is whether
to consider for evaluation the given set of relevant documents
[9]. To compare our methods to each other with respect to
various aspects (e.g., the number relevant documents), we
consider the given relevant documents in the evaluation pre-
sented in Sections 4.2.1, 4.2.2 and 4.2.3. We note that our
methods do not directly position the given relevant docu-
ments at the highest ranks of the final result list. Thus, this
evaluation also enables to study their ability to rank high
the given relevant documents. When comparing our meth-
ods with reference comparisons in Sections 4.2.4 and 4.2.5,
we use a residual corpus approach for evaluation [9]: the
given relevant documents (and in Section 4.2.4 also the given
non-relevant documents) are not considered in the evalua-
tion. For completeness, we re-visit the comparison of our
methods using the residual corpus evaluation approach in
Section 4.2.6. We note that in all cases the final result list
that is evaluated contains n = 100 documents.

Free-parameter values. Our methods that use RM3 de-
pend on its free parameters. The MetaFuse method has
an additional free parameter, λ. The free-parameter values,
in all methods, are set using leave-one-out cross validation
performed over queries. MAP serves as the optimization
criterion for the train set. The parameter λ in MetaFuse
is set to values in {0, 0.1, . . . , 1}. The values of α and δ,
which are used by RM3, are selected from {0.5, 0.8, 0.9, 1}
and {10, 50, 75}, respectively8.

4.2 Experimental results

4.2.1 Main result

We show in Section 4.2.3 that the infAP list-effectiveness
estimate is more effective than the others we consider. Hence,
unless otherwise stated, the results presented for ReFuse and
MetaFuse are based on using infAP. In practical scenarios,
very few relevant documents are available as feedback (if
at all). Thus, in Table 2 we present results for r ∈ {1, 2}.
Below we study the effect of further varying r.

We see in Table 2 that, as is expected, all methods that use
the relevance feedback are more effective — almost always
to a statistically significant degree – than CombMNZ which

8The optimal value of α as determined over the train sets of
queries was in most cases ≥ 0.9; that of δ was in most cases
in {50, 75}. As a case in point for performance sensitivity
analysis, setting α = 0.9 and δ = 50 in MetaFuse often
results in MAP performance very similar to that attained
using leave-one-out cross validation, except for TREC9.

does not utilize it. In Section 4.2.6 we show that the same
finding holds with the residual-corpus evaluation approach.

We can also see in Table 2 that CorpusRank, which ranks
the entire corpus using the relevance model, is somewhat
more effective in terms of MAP than FusedListReRank; Fus-
edListReRank uses the relevance model to re-rank the list
produced by CombMNZ (Lfuse). In terms of p@10, the re-
verse often holds. However, the performance differences are
statistically significant in very few cases.

We now turn to analyze the performance of the methods
that leverage the special characteristics of the fusion setting
when exploiting the relevance feedback. PoolRank uses the
relevance model to rank the pool of documents in the inter-
mediate retrieved lists. Its performance is better in most rel-
evant comparisons (track × evaluation measure) than that
of CorpusRank and FusedListReRank; in quite a few cases
the performance improvements are statistically significant.

The ReFuse method uses the relevance feedback to esti-
mate the effectiveness of the intermediate lists so as to re-
fuse them. Its performance is worse than that of the Corpus-
Rank, FusedListReRank and PoolRank methods; these use
the relevance model induced from the relevant documents
to directly rank documents. Yet, we see that the perfor-
mance of ReFuse is superior to that of CombMNZ in a vast
majority of the relevant comparisons. CombMNZ uses uni-
form list-effectiveness estimates, while ReFuse utilizes infAP
(here) with the given feedback to estimate list effectiveness.

The most effective method in Table 2 is MetaFuse. Specif-
ically, MetaFuse always outperforms — often substantially
and to a statistically significant degree — CorpusRank and
FusedListReRank. These two methods use the relevance
feedback as in the single retrieved list case; i.e., they do not
leverage the fact that feedback is provided for a list which
results from fusion. MetaFuse does leverage this fact by in-
tegrating PoolRank and ReFuse. Thus, we conclude that
there is much merit in exploiting the special characteristics
of the fusion setting when using the relevance feedback.

We also see in Table 2 that although PoolRank is always
more effective than ReFuse, MetaFuse that integrates the
two yields performance that transcends that of both; the
improvements are statistically significant in most relevant
comparisons. This finding attests to the fact that the two
purposes for which the relevance feedback is used in Meta-
Fuse — direct ranking of documents and list-effectiveness
estimation for re-fusion — are complementary.

Varying the number of relevant documents. Figure 1 ex-
hibits the effect of varying r, the number of given relevant
documents, on the performance of the various methods.
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Figure 1: The effect of varying the number of relevant documents (r) on MAP performance. Note: figures
are not to the same scale.

Our first observation is that the performance of all meth-
ods increases with increasing values of r. The CorpusRank,
FusedListReRank and PoolRank methods directly rank doc-
uments using the relevance model which is constructed from
the r relevant documents. Thus, these methods benefit
from the improved quality of the relevance model when con-
structed from more relevant documents. The ReFuse method
uses the feedback (relevant and non-relevant documents)
with infAP to estimate the effectiveness of the intermediate
lists so as to re-fuse them. Thus, increasing r, which means
more feedback, results in more reliable estimates. Naturally
then, the effectiveness of MetaFuse, which integrates Pool-
Rank and ReFuse, improves with increasing values of r.

We also see in Figure 1 that the relative performance pat-
terns of the methods across the values of r are consistent
with those exhibited in Table 2 for r ∈ {1, 2}. For example,
PoolRank is in many cases more effective than CorpusRank
and FusedListReRank. This provides further support to the
relative merits of using the relevance model to rank the pool
of documents in the intermediate lists with respect to using
it to (re-)rank the entire corpus or the final fused list.

We observe in Figure 1 that although PoolRank is con-
sistently more effective than ReFuse, MetaFuse which inte-
grates them is in most cases more effective than both. We
note that most of the improvements over ReFuse, and many
of the improvements over PoolRank, specifically for TREC7
and TREC8, were found to be statistically significant.

With increasing values of r the performance difference be-
tween MetaFuse and PoolRank become smaller. (For r > 2
in TREC9 the performance is almost identical.) The reason
is that the performance differences between PoolRank and
ReFuse become larger when increasing r. Indeed, the rela-
tive performance improvements of PoolRank with increasing
values of r are larger than those of ReFuse. This finding
means that the improvements in the quality of the relevance
model used in PoolRank have relatively more impact on the
resultant retrieval effectiveness than those of the list effec-
tiveness estimates used in ReFuse for re-fusion.

4.2.2 Balancing the roles of the relevance feedback

The parameter λ in MetaFuse controls the balance be-
tween the two purposes (roles) that the relevance feedback
serves. Higher values of λ result in more reliance on using the
relevance model in PoolRank to rank the documents in the
pool; for λ = 1, MetaFuse becomes PoolRank. Lower values
of λ result in more reliance on using the relevance feedback
to estimate list effectiveness for re-fusion in ReFuse; specifi-

cally, λ = 0 amounts to ReFuse. In Figure 2 we present the
effect of varying λ on the performance of MetaFuse. The
other free parameters of the methods (i.e., those of the rel-
evance model) are set using leave-one-out cross validation.

We see in Figure 2 that for λ > 0 MetaFuse outperforms
ReFuse (MetaFuse with λ = 0). The reason is that MetaFuse
integrates ReFuse with PoolRank (MetaFuse with λ = 1)
and the latter outperforms the former. Yet, often, the best
performance of MetaFuse is attained for λ < 1. This finding
attests to the merit in using the relevance feedback simulta-
neously to directly rank documents in the pool (PoolRank)
and to estimate list effectiveness for re-fusion (ReFuse).

A general trend observed in Figure 2 is that the optimal
value of λ rises when increasing the number of relevant doc-
uments (r). This finding can be explained by the fact that
the performance of PoolRank improves to a much larger ex-
tent than that of ReFuse when increasing the value of r as
discussed above for Figure 1.

4.2.3 Comparing list-effectiveness estimates

One of the two purposes for which relevance feedback is
used in our methods — specifically, in ReFuse (Equation 4)
that is used by MetaFuse — is to estimate the effectiveness
of the intermediate lists. Insofar, infAP was used in the eval-
uation. We now turn to study the performance of ReFuse
when using all the list-effectiveness estimates proposed in
Section 3.2.1. Recall that we are provided with relevance
feedback for the set F (Lfuse) of the documents most highly
ranked in the fused list Lfuse. Thus, for many documents
in the intermediate lists there are no relevance judgments.

For comparison, we study two additional list-effectiveness
estimates which are applied in ReFuse and which do not use
the relevance feedback. The first is uniform that considers
all intermediate lists to be of the same effectiveness. Us-
ing ReFuse with uniform amounts to the CombSUM fusion
method [14] mentioned in Section 3.

The second estimate is overlap [38]. For a list Li, the

overlap is defined as
P

j 6=i

2|Li

T

Lj |

|Li|+|Lj |
— i.e., the normalized

sum of its overlap with all other lists. Conceptually similar
list-effectiveness estimates were used in other work on fusion
[39] and in work on evaluating the effectiveness of search
systems without relevance judgments [34]. The premise is
that inter-list similarity (in terms of shared documents) in-
dicates effective retrieval. The performance of ReFuse using
the list-effectiveness estimates is presented in Figure 3.
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Figure 2: The performance of MetaFuse for different values of the number of relevant documents (r) when
varying λ. λ = 1 amounts to PoolRank and λ = 0 amounts to ReFuse. Note: figures are not to the same scale.
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Figure 3: The performance of ReFuse with various list-effectiveness estimates. Note: figures are not to the
same scale

Our first observation based on Figure 3 is that all list-
effectiveness estimates are almost always more effective than
the uniform estimate. We also see that the overlap measure,
which does not use the relevance feedback, is more effective
than the Pearson and Kendall-τ estimates that do use it.
However, overlap is often substantially less effective than
the other estimates that use the relevance feedback, namely,
infAP, infAPonlyRel and AP.

We see in Figure 3 that, in general, the performance of
ReFuse when employed with the list-effectiveness estimates
that use the relevance feedback tends to increase when the
number of relevant documents (r) increases. The increase for
Pearson and Kendall-τ is, however, extremely small. Recall
that these two estimates, in contrast to infAP, infAPonlyRel
and AP, do not estimate list effectiveness directly; rather,
via the comparison of the list with its re-ranked version at-
tained by using the relevance model. Thus, it may come
as no surprise that using Pearson and Kendall-τ in ReFuse
yields performance that is inferior (often substantially) to
that of using infAP, infAPonlyRel and AP.

It is evident in Figure 3 that using in ReFuse the infAP es-
timate, which was used insofar in the experiments reported
above, results in the best overall performance. infAP is the
only estimate that directly exploits the non-relevant docu-
ments in F (Lfuse) by differentiating them from unjudged
documents — i.e., documents not in F (Lfuse). Using in-
fAPonlyRel, which treats non-relevant documents as un-
judged, and AP which treats non-relevant and unjudged
documents the same, result in performance that is often
somewhat inferior to that of using infAP.

With increased number of relevant documents (r) the per-
formance of using AP becomes closer to that of using infAP.
(For almost all values of r for TREC9 the performance is
almost identical.) The reason is that AP becomes more ro-
bust when more relevant documents are available. In con-
trast, the performance of using infAPonlyRel with increased
r becomes more inferior to that of using infAP, because in-
fAPonlyRel treats the non-relevant documents as unjudged.
Note that increased r is likely to result in increased number
of non-relevant documents in F (Lfuse) by the virtue of the
experimental setting described in Section 4.1.

4.2.4 Comparison with the Hedge method

As noted in Section 2, there is a single previous report
on using relevance feedback in the context of fusion-based
retrieval [4]. TREC runs were fused using relevance judg-
ments obtained through an iterative process of active rele-
vance feedback based on the Hedge method [15]. Here, we
use the approach as a reference comparison that fuses the
intermediate lists using the feedback documents (F (Lfuse)).

The loss of document d in F (Lfuse) with respect to an
intermediate list Li in which it appears is:

l(d; Li)
def
=

1

2
(−1)rel(d)

tmax
X

j=tk

1

j
; (7)

tk is the rank of d in Li; rel(d) is 1 if d is relevant and 0 if
it is not; tmax = |Dpool| is the size of the pool of documents
in the intermediate lists. Then, Li’s weight is defined as:

wIq (Li; F (Lfuse))
def
= β

P

d:d∈Li∩F (Lfuse) l(d;Li)
, (8)
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Figure 4: Comparison with the Hedge method [4]. In contrast to the case in previous figures, a special
residual corpus approach is used for evaluation wherein the given relevant and non-relevant documents are
not considered in the evaluation. Note: figures are not to the same scale.

where β is a free parameter with a value in {0.1, . . . , 0.9}. If

Li ∩ F (Lfuse) = ∅ then wIq (Li; F (Lfuse))
def
= 0.

The fusion score of d (∈ Dpool) is its average weighted loss

over all lists, computed as if it is non-relevant (rel(d)
def
= 0):

SHedge(d)
def
=

X

Li

l(d; Li)wIq (Li; F (Lfuse)). (9)

If d 6∈ Li, then l(d; Li) is set in Equation 9 to the average loss
of all the documents in Dpool \Li, where these are treated as
if they are not relevant and positioned below the documents
in Li (i.e., at ranks 101 to tmax = |Dpool|).

The original implementation of Hedge as an iterative ac-
tive feedback approach positioned the given feedback docu-
ments at the highest ranks of the final result list [4]. Such
direct positioning calls for a residual-corpus approach for
evaluation [9]. Specifically, here, the documents in F (Lfuse)
are removed from all evaluated rankings and the residual
rankings serve for evaluation.

Our ReFuse and MetaFuse methods use the infAP list-
effectiveness estimate which was shown above to be the most
effective among those considered. In addition, we also study
an instance of our ReFuse method, ReFuse(Hedge), in
which the list-effectiveness estimate is that defined in Equa-
tion 8 and used by Hedge. The parameter β used by Hedge
and ReFuse(Hedge) is set using leave-one-out cross valida-
tion performed over the queries in a track. Recall that the
free-parameter values of our methods are also set using leave-
one-out cross validation. Figure 4 presents the results.

We first see in Figure 4 that in contrast to Figures 1, 2 and
3 the curves are (almost always) monotonically decreasing
with increasing values of r. The reason is that we use here a
residual corpus approach for evaluation wherein all feedback
documents are not considered for evaluation.

Figure 4 shows that ReFuse outperforms ReFuse(Hedge).
This means that infAP is a more effective list-effectiveness
estimate than that used by Hedge (Equation 8). Further-
more, in all tracks, except for TREC3, ReFuse outperforms
Hedge. Both are linear fusion methods that differ in the list-
weighting function, and in the scores assigned to documents;
in ReFuse the retrieval scores of a document in the lists are
used, and in Hedge Equation 9 is used.

We also see in Figure 4 that PoolRank and MetaFuse sub-
stantially outperform Hedge. A vast majority of the per-
formance improvements for PoolRank, and all of them for
MetaFuse, were found to be statistically significant.

4.2.5 Comparison with past-performance-based es-
timation of list effectiveness

ReFuse, and therefore MetaFuse, use the relevance feed-
back to estimate the effectiveness of the intermediate lists
so as to re-fuse them. We now turn to compare them with
methods that estimate list effectiveness based on the past
performance of the retrieval method used to create the list.
Past performance is determined using a train set of queries.

In our experimental setting, the intermediate lists are de-
rived from TREC runs. Each run contains the results of a
retrieval method for the queries in a track. We used a leave-
one-out cross validation procedure across queries throughout
the evaluation. Thus, all queries in a run except for the one
at hand serve as the train set. Based on this set, the past
performance of the retrieval method is determined.

The Learning method [2] is a linear fusion method that
uses Equation 4 as is the case for ReFuse. For a list effec-
tiveness estimate it uses the MAP (mean average precision)
of the run computed over the train set of queries.

ProbFuse is a highly effective fusion method [23]. It uses
the train query set (henceforth Q) to estimate the effective-
ness of segments of the intermediate lists retrieved for a test

query. Specifically, p̂(dk|L)
def
= 1

|Q|

P

q′∈Q

|Rk,q′ |

|Rk,q′ |+|Nk,q′ |
is

an estimate for the probability that a document, denoted
dk, in the k’th segment of an intermediate list L, will be
relevant to some query. |Rk,q′ | and |Nk,q′ | are the number
of documents marked as relevant and non-relevant, respec-
tively, to a train query q′; these documents appear in the
k’th segment of an intermediate list in the train set which
was retrieved for q′ in the same run that L belongs to. That
is, Rk,q′ and Nk,q′ are documents retrieved in response to q′

by the same retrieval method that produced L.
A document d in the pool (Dpool) of documents retrieved

for a test query is scored by SProbFuse(d)
def
=

P

Li

1
k
p̂(dk|Li),

where k is the number of the segment of Li in which d ap-

pears; if d 6∈ Li then p̂(dk|Li)
def
= 0 for all k. We use the

train set of queries (with MAP serving as the optimization
criterion) to also set the number of segments in the inter-
mediate lists to a value in {2, 4, 6, 8, 10, 15, 20, 25, 30, 40, 50}.
(Recall that the lists are composed of 100 documents.)

For an additional reference comparison we use CombMNZ
[14, 22] which essentially utilizes uniform list-effectiveness
estimates. (Refer back to Section 3 for details.) As Learn-
ing, ProbFuse and CombMNZ do not use the relevance feed-
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Figure 5: Comparison with fusion methods that estimate list effectiveness based on past performance of the
retrieval method. A residual corpus evaluation approach is used where the given relevant documents are not
considered in the evaluation. Note: figures are not to the same scale.

back, specifically, the given relevant documents, we use a
residual-corpus approach to evaluation [9]: the given rele-
vant documents are removed from all evaluated rankings and
the residual rankings serve for evaluation. Figure 5 presents
the performance numbers. All curves are monotonically de-
creasing due to the residual-corpus evaluation approach.

We see in Figure 5 that all methods outperform CombMNZ
in almost all cases. We also see that in many cases ReFuse
outperforms Learning. The main exceptions are for a small
number of relevant documents (r) for TREC3 and TREC7.
It is important to recall that the feedback is provided for the
fused list (Lfuse) and not for the intermediate lists. Thus,
the feedback available for the intermediate lists is scarce as
was discussed in Section 3.2.1. Thus, we conclude that es-
timating list effectiveness with minimal relevance feedback
can often result in better fusion performance than that of
estimating list effectiveness using (much) information about
the past performance of the retrieval method.

We also see in Figure 5 that ProbFuse outperforms ReFuse
and Learning. This comes as no surprise because Prob-
Fuse uses estimates for the effectiveness of segments of the
retrieved lists (and higher segments are rewarded) while
ReFuse and Learning use estimates for the entire lists. Thus,
a future direction is integrating the feedback-based list effec-
tiveness estimates of ReFuse with the segment-based ones of
ProbFuse. Yet, as shown in Figure 5, our MetaFuse method
that utilizes the relevance feedback, but does not rely on
past performance of the retrieval method to estimate list ef-
fectiveness, consistently outperforms ProbFuse; many of the
improvements are substantial and statistically significant.

4.2.6 Further evaluation using the residual corpus
approach

The main comparison of our approaches which was pre-
sented in Section 4.2.1 was based on considering the given
relevant documents for the evaluation. Here we compare the
methods’ performance with the residual corpus approach [9]:
the given relevant documents are removed from any ranking
that is evaluated and the residual ranking serves for evalua-
tion. Figure 6 presents the performance curves.

We observe in Figure 6 the same relative performance pat-
terns observed in Figure 1; the latter was based on evalu-
ation that considers the given relevant documents. Specifi-
cally, (i) all methods that use the relevance feedback perform
(almost always) better than CombMNZ which does not use
it; we note that almost all of these improvements are sta-

tistically significant; (ii) using the relevance model induced
from the relevant documents to rank only the the pool of
documents in the intermediate retrieved lists (PoolRank) is
often more effective than using it to rank the entire corpus
(CorpusRank) or to re-rank the final fused list (FusedListR-
eRank); (iii) the methods that use the relevance model to
directly rank documents (CorpusRank, FusedListReRank,
PoolRank, MetaFuse) are more effective than the ReFuse
method that uses the relevance feedback to estimate the ef-
fectiveness of the intermediate lists so as to re-fuse them;
and, (iv) our MetaFuse method, which uses the relevance
feedback to both directly rank documents and re-fuse the
intermediate lists, is the most effective. Many of the im-
provements it posts over the other methods are substantial
and were found to be statistically significant.

5. CONCLUSIONS AND FUTUREWORK
We addressed the challenge of using relevance feedback in

the fusion-based retrieval setting. That is, the feedback is
provided for the documents most highly ranked in a list that
results from fusing several intermediate retrieved lists.

We devised methods that use the relevance feedback for
two different, yet complementary, purposes. The first is di-
rectly ranking the pool of documents in the intermediate
lists. The second is estimating the effectiveness of the in-
termediate lists so as to re-fuse them. We presented a meta
fusion approach that uses the feedback for these two pur-
poses simultaneously.

Empirical evaluation demonstrated the merits of our ap-
proach. For example, the resultant retrieval performance is
much better than that of using the feedback as in the single
retrieved list setting; i.e., ignoring the fact that the feedback
is provided for a list that results from fusion.

We plan to explore additional list-effectiveness estimates
to be used in our approach. Adapting our methods to use
pseudo feedback, rather than true feedback, is another in-
teresting future venue.
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Figure 6: Performance comparison of our methods using the residual corpus evaluation approach where the
given relevant documents are not considered for evaluation. Note: figures are not to the same scale.
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