Fast Probabilistic Planning Through Weighted Model Counting

Carmel Domshlak Jörg Hoffmann

Technion (Israel)
Max-Planck-Institute for Computer Science (Germany)

June 8, 2006
Talk Outline

- Probabilistic Planning
- Probabilistic-FF:
 - Search States as Bayes networks
 - Search States as Weighted CNFs
 - Heuristic Function
- Results
- Conclusion
Probabilistic Planning: Problem Definition

Also known as conformant/conditional probabilistic planning

- Initial (belief) state: probability distribution P_I over the world states
- A set of (possibly) stochastic actions
- Goal: a set of goal world states
- Plan: a single sequence of actions that transforms the system into one of the goal states with probability higher than θ
STRIPS-like, declarative description: \((A, P_I, G, \theta)\)
- Initial belief state \(P_I\) in structured representation
 - Bayes network \(N_I\) over state propositions/variables
- Deterministic actions
 - STRIPS plus conditional effects
- Probabilistic actions
 - STRIPS plus conditional PDs over effects
- Goal \(G\): a set of facts

Probabilistic actions: treated by the framework, but yet to be implemented
Example

Locations \(L_1, L_2, \) robot \(R, \) block \(B \)

Actions
- robot moves between locations (deterministic)
 - robot in the target location with probability 1
- robot moves between locations while carrying the block (probabilistic)
 - success with probability 0.7
 - robot moves, but block stays with probability 0.2
 - complete failure with probability 0.1

Initial belief state by \(\mathcal{N}_i \):

\[
\begin{array}{cc}
rL_1 & rL_2 \\
0.9 & 0.1 \\
\end{array}
\]

\[
\begin{array}{cc}
& bL_1 & bL_2 \\
rL_1 & 0.7 & 0.3 \\
rL_2 & 0.2 & 0.8 \\
\end{array}
\]
Talk Outline

▶ Probabilistic Planning
▶ **Probabilistic-FF:**
 ▸ Search States as Bayes networks
 ▸ Search States as Weighted CNFs
 ▸ Heuristic Function
▶ Results
▶ Conclusion
Probabilistic-FF: Informal Overview

- ... is based on the Conformant-FF code
- ... “simplifies” to Conformant-FF when $\theta = 1$
- ... extends Conformant-FF’s belief state representation and heuristic function
- ... tests on problems with probabilistic initial state and deterministic actions
 - state of the art: ≈ 100 world states, 15-20 steps plans
 - solved problems with billions world states, > 120 plan steps
Probabilistic-FF: Key issues

Key ideas: combining between
1. lazy CNF-based (non-probabilistic) belief state representation of Conformant-FF [BH04]
2. probabilistic reasoning using weighted CNF model counting [SBK05]
 - gluing between (1) and (2) with lazy representation of belief states using Bayes networks
 - structured representation based on logical factoring

Most technically involved part
- proper modification of the heuristic function (relaxed plans)
Talk Outline

- Probabilistic Planning
- Probabilistic-FF:
 - Search States as Bayes networks
 - Search States as Weighted CNFs
 - Heuristic Function
- Results
- Conclusion
Search States as Bayes networks

- Forward search in belief space
 - Search states are belief states reachable from P_i through some actions sequence \mathbf{a}
- Problem: Explicit belief state description is getting less and less structured with $|\mathbf{a}| \to \infty$
Search States as Bayes networks

- Forward search in belief space
 - Search states are belief states reachable from P_i through some actions sequence a
- Problem: Explicit belief state description is getting less and less structured with $|a| \to \infty$
- Solution: Lazy representation of the belief state “after a” as a Bayes network \mathcal{N}_a

$P_a = P(V_m)$

$P_a(G) = P(G_m)$
Talk Outline

- Probabilistic Planning
- Probabilistic-FF:
 - Search States as Bayes networks
 - Search States as Weighted CNFs
 - Heuristic Function
- Results
- Conclusion
Inference in BNs and Weighted CNFs

Problems:

- Inference in BNs is \(\#P \)-complete
- Classical exact algorithms do not scale well on large, dense networks

Suggestion:

1. Compile a BN \(\mathcal{N} \) into a cnf \(\varphi(\mathcal{N}) \),
2. Associate some literals of \(\varphi(\mathcal{N}) \) with numerical weights derived from \(\mathcal{N} \),
3. Do weighted model counting on \(\varphi(\mathcal{N}) \) by reusing (and adapting) techniques used in DPLL-style search for SAT.

Scales well when...

- lots of deterministic dependencies
- lots of context-specific independencies

We have that!
Inference in BNs and Weighted CNFs

Problems:

- Inference in BNs is \#P-complete
- Classical exact algorithms do not scale well on large, dense networks

Suggestion: [CD05,SBK05]

1. Compile a BN \mathcal{N} into a cnf $\varphi(\mathcal{N})$,
2. Associate some literals of $\varphi(\mathcal{N})$ with numerical weights derived from \mathcal{N},
3. Do \textit{weighted model counting} on $\varphi(\mathcal{N})$ by reusing (and adapting) techniques used in DPLL-style search for SAT.

We have that!
Inference in BNs and Weighted CNFs

Problems:

- Inference in BNs is #P-complete
- Classical exact algorithms do not scale well on large, dense networks

Suggestion: [CD05,SBK05]

1. Compile a BN \mathcal{N} into a cnf $\varphi(\mathcal{N})$,
2. Associate some literals of $\varphi(\mathcal{N})$ with numerical weights derived from \mathcal{N},
3. Do weighted model counting on $\varphi(\mathcal{N})$ by reusing (and adapting) techniques used in DPLL-style search for SAT.

Scales well when ...

- ... lots of deterministic dependencies
- ... lots of context-specific independencies

We have that!
WMC in Probabilistic-FF Forward Search

Sketch

At a (belief) search state “after a” (N_a) . . .

- compile N_a into a wcnf $\varphi(N_a)$
- compute $P_a(G) = \text{WMC} (\varphi(N_a) \land G|_a|)$
- if $P_a(G) \geq \theta$: return a
- otherwise:
 - determine actions a applicable “after a” (that is, $P_a(\text{pre}(a)) = 1$)
 - compute heuristic estimates for belief states “after a and a”
 - keep searching . . .
At a (belief) search state “after a” (\mathcal{N}_a) . . .

- compile \mathcal{N}_a into a wcnf $\varphi(\mathcal{N}_a)$
 - ... compilation scheme along [SBK05]
- compute $P_a(G) = \text{WMC} (\varphi(\mathcal{N}_a) \land G_{|a|})$
 - ... use Cachet [SBBKP04]
- if $P_a(G) \geq \theta$: return a
- otherwise:
 - determine actions a applicable “after a” (that is, $P_a(pre(a)) = 1$)
 - compute heuristic estimates for belief states “after a and a”
 - keep searching . . .
At a (belief) search state “after a” (\mathcal{N}_a) . . .

- compile \mathcal{N}_a into a wcnf $\varphi(\mathcal{N}_a)$
 - ... compilation scheme along [SBK05]
- compute $P_a(G) = \text{WMC} (\varphi(\mathcal{N}_a) \land G|_a)$
 - ... use Cachet [SBBKP04]
- if $P_a(G) \geq \theta$: return a
- otherwise:
 - determine actions a applicable “after a” (that is, $P_a(\text{pre}(a)) = 1$)
 - ... as in Conformant-FF: SAT queries only
 - compute heuristic estimates for belief states “after a and a”
 - ... see next
 - keep searching . . .
Talk Outline

- Probabilistic Planning
- Probabilistic-FF:
 - Search States as Bayes networks
 - Search States as Weighted CNFs
 - Heuristic Function

- Results
- Conclusion
Probabilistic-FF: Heuristic Function

Heuristic in Conformant-FF:

▶ ... ignore delete lists
▶ ... ignore all but one effect condition
▶ ... extend FF’s relaxed planning graph with sets of *unknown* (uncertain) facts, and implications between them
▶ With unitary effect conditions, the implications are *edges in a DAG* ⇒ (practically) efficient reasoning possible
Idea I: Certain *weighted extension* of the implication graph

- No changes in implications due to **deterministic actions**
 - Implication $c(t) \rightarrow q(t + 1)$ for an unknown condition c of (an effect e of) $a \in A(t)$ such that $q \in add(e)$

- **Probabilistic actions**
 - Special **weighted** propositions $w_q^e(t)$ for probabilistic outcomes ϵ of e ($weight(w_q^e) = prob(\epsilon)$)
 - Implication $w_q^e(t) \rightarrow q(t + 1)$
 - Implication $c(t) \rightarrow w_q^e(t)$ for an unknown condition c . . .
Idea II: Weight propagation to the leafs of the implication graph

- For each fact node $q(t)$, compute $weight_{q(t)}(v)$ for all nodes v in the implication sub-graph $Imp_{q(t)}$ rooted in $q(t)$.
- Computed inductively from $q(t)$ down to the leafs of $Imp_{q(t)}$.
- $weight_{q(t)}(v)$ is an upper bound on the probability of achieving q at time t by a sequence of actions responsible for a path from v to $q(t)$ in Imp.
- The likelihood of achieving the goals by a relaxed plan of t time steps is estimated by:

$$prob(G, t) = WMC(\varphi(N_1) \land \bigwedge_{g \in G} \bigvee_{\text{leaf} \in Imp_{g(t)}} \text{leaf})$$
Build pRPG until either levels off or \(prob(G, t) \geq \theta \)

If \(prob(G, t) < \theta \): report FALSE

Otherwise: extract a relaxed plan, and return the number of its actions as \(h \)

Completeness: if FALSE, then there is no relaxed plan that achieves \(G \) with probability \(\geq \theta \)