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Abstract

A semantic topology is a peer overlay network connected
via semantic links, constructed using schema mappings and
used for peer querying. The large-scale and dynamic en-
vironments of P2P networks dictate the use of automatic
schema matching, which was shown to carry with it a de-
gree of uncertainty. Therefore, peers prefer network topolo-
gies that improve their ability to answer queries effectively,
by reducing uncertainty. We introduce a model for a peer
database management system that manages the inherent
uncertainty of automatic schema matching, the amplifica-
tion of this uncertainty over transitive mappings, and its
impact on query processing. We then briefly present the
research challenges involving a dynamic topology setting
where peers can change their neighbor set selection.

1 Introduction

Peer-to-Peer (P2P) systems rely on machine-to-machine
ad-hoc communications to offer services to a community.
P2P technologies show distinct advantages in scalability,
autonomy, and robustness. Originally, P2P systems dealt
with very simple data and query models: only filenames
were shared and queries were composed of a single hash
value or a keyword. File content was described by a simple
schema (set of attributes, such as title of a song) to which
all the peers in the network have to subscribe.

Peer Data Management Systems (PDMS) combine the
decentralized setting and autonomy of P2P systems with the
rich semantics of DBMSs. Following the data ring abstrac-
tion [3], we can conceptually envision a setting where each
peer maintains a local database (e.g., a DB-life like informa-
tion) and a descriptive schema exposing its database to other
peers. Information sharing is done by query dissemination,
iterative propagation of queries among connected peers.
Since peers are meant to be totally autonomous, they may
use different schemata to represent their data, even if they

refer to the same domain of interest [1]. Thus, in order to es-
tablish (meaningful) information exchange between peers,
a required step involves identification of schema mappings
for the purpose of query answering.

A grand challenge to PDMSs involves the integration of
data originating from thousands of heterogeneous, dynamic
and potentially unknown data sources. In a P2P setting, an
assumption that all the peers rely on one global schema can-
not be made [12]. This new challenge sharply contrasts with
previous challenges faced in the field of data integration in
terms of scalability, uncertainty, and dynamicity. PDMSs
often involve tens or hundreds of sources with thousands or
tens of thousands of semantic matches across sources [13].
Information sources come and go regularly and new sources
have to be integrated on the fly with minimum overhead.
Also, systems have to be resilient to node failures, includ-
ing the failure of central indices or centralized servers such
as mediators. At this scale, manual review of schema map-
pings is impractical. Instead, peers are likely to employ
automated methods and return the apparent best answers.
However, it has been shown in [10] that automatic match-
ing is an uncertain process. It has also been shown that for
a certain family of “well behaved” mappings termed mono-
tonic, one can safely interpret a high confidence measure
as a good semantic mapping. Thus, monotonic automatic
matching algorithms can be trusted to associate confidence
measures that reflect the accuracy of their outcome [9].

We model a PDMS as a network of peers connected by
schema mapping links associated with mapping confidence
measures. We assume the use of monotonic matching algo-
rithms and take confidence measure as truly reflecting map-
ping accuracy. Yet, schema mappings may still be inaccu-
rate. For example, consider the following, paraphrased from
[7]. Three data sources R, S, and T, all describing personal
data, reside at three different peers. Data source R describes
a person by her email address, current address, permanent
address, and month of hiring. Data source S describes a
person by her name, email, mailing address, home address,
office address, and month of job start. Finally, data source T
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has three attributes, namely name, email, and office address.

R = (pname,e-addr,c-addr,p-addr,hire month)
S = (name,email,m-addr,hm-addr,o-addr,start month)

T = (name,email,o-addr)

A peer, using an automatic schema matching utility may
determine that c-addr from R matches with o-addr from
S while the correct matching may be between c-addr and
hm-addr. Therefore, the query

qR: SELECT c-addr FROM R

may be wrongly rewritten to be

qS: SELECT o-addr FROM S

Incorrect attribute matchings may propagate further in
the peer network, generating imprecise mapping composi-
tions. Therefore, we model the deterioration of accuracy
over compositions. We define a PDMS semantic overlay
structure, semantic topology, and show the influence of
topology selection on the quality of queries reformulation
in a PDMS. We consider a dynamic topology where a peer
connects with some arbitrary peers upon joining the net-
work and can later change its neighbor set selection. We re-
strict our attention in this work to topology self-organization
based on schema mapping uncertainty and focus on the fol-
lowing two research questions: 1) Can we efficiently iden-
tify “good” topologies, those that reduce the uncertainty in
the network? and 2) Can such “good” topologies self orga-
nize by self-interested peers?

2 Model Definition

Let P be a set of peers, storing data in a database accord-
ing to a schema S. We do not make any assumptions on the
exact data model. We only require that schemata store infor-
mation using attributes, where each attribute A ∈ S may be
an attribute in a relational schema, an element or an attribute
in XML, and a class or a property in RDF. As a running ex-
ample, we use the relational model. Section 1 provides an
example of three peers, each with a database that contains a
single table.

Using the open-world assumption, peers do not necessar-
ily share the same extensions, which motivates the need to
access as many peers as possible to get a complete response
to a query. Depending on the data model, a query language
for querying and transforming databases is used. We write
q = {Ai|Ai ∈ S} to denote the set of attributes involved
in a query. For example, qR = {c-addr} represents the set
of R attributes that participate in qR. Each peer p is associ-
ated with a set of queries Q, where the frequency of issuing
query q is denoted by λ.

We assume that a peer p ∈ P can be identified by a
unique identifier ID (e.g., an IP address or a peer ID in a
P2P network). Each peer has a basic communication mech-
anism that allows it to establish connection to other peers,
using an access structure à la Gnutella. Thus, peers send
ping messages with a certain Time-To-Live value and re-
ceive pong messages in order to learn about the network
structure. Extending the Gnutella protocol, a peer also
sends its schema S as part of a pong message.

Peers define schema mappings Mij between a source
schema Si and a target schema Sj . Such mappings can
be created manually, semi- or fully-automatically depend-
ing on the peers and the setting. A schema mapping Mij

allows the reformulation of a query of Si into a new query
to a target schema Sj . Schema mappings can be expressed
in a variety of ways. Following [6], a schema mapping Mij

is given as a set of attribute mappings m:

Mij = {m (A→ A′) |A ∈ Si, A
′ ∈ Sj} (1)

where a source attribute is mapped into a target attribute.1

For example, a mapping from R (peer p1) to S (peer p3, see
Figure 1) is given as follows:

M13 = {(pname,name), (e-addr,email),
(c-addr,o-addr), (p-addr,hm-addr)}

Using schema mappingMij we can reformulate a source
query q into a target query q′ consisting of attributes from
Sj only, using Mij(q). For reformulation, all attributes in
q should have correspondences in Sj . A peer, receiving a
reformulated query, may decide to reformulate it in turn for
further dissemination. Thus, queries can be reformulated
along a chain several times iteratively, e.g.:

q′ = MT−1,T (MT−2,T−1 · · · (M12(q)) · · · ) (2)

Continuing with the example above, rewriting query qR into
S is represented as qS = M13 (qR) = {o-addr}, since c-
addr is mapped into o-addr according to M12.

Figure 1. A semantic network graph.

A semantic network topology G(P,M) is a graph, with
peers as nodes and directed schema mappings as edges.

1Recall that attributes may be compound. Therefore, such a model is
in no way restricted to 1 : 1 mappings.
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Note that a pair of nodes can be related through opposite
directed edges, whenever two peers keep mappings of one
another. Figure 1 provides an illustrative example of a se-
mantic network graph. The nodes represent peers and edges
represent semantic links. For example, peers p1, p3 and p4

are the peers with databases R, S, and T, respectively. Edge
labels will be explained later in this paper.

Each peer p maintains a list of neighbors N . For each
neighbor pj , pi maintains a mapping Mij . Each peer has
an upper bound K of the number of neighbors. In Figure 1,
for example, K1 = 2 and K4 = 1. Our network model fits
nicely with typical network models in the context of P2P
networks such as power-law networks [8] and small-world
networks [16] that suggest average short path lengths be-
tween peers, and limited number of neighbors distributed
according to some power law. It also follows the observa-
tion in [11], stating that the the key to scalability involves
minimizing the number of message passing.

We promote the notion of dynamic topologies in the con-
text of PDMSs. New peers can be discovered by means of
random ping messages as well as through answers to query
propagation. By matching against new peers, a peer can ex-
pand or replace (if K is exceeded) neighbors, thus possibly
improving its ability to obtain answers to queries.

3 Schema Matching in PDMS

The query reformulation mechanism in [15, 4] assumes
semantically correct schema mappings. As PDMSs tar-
get large scale, decentralized, and heterogeneous environ-
ments, it is not always possible to create correct mappings
between schemata. Given the vibrant activity in the area of
(semi) automatic schemata alignment, we can expect some
(or even most) of the mappings to be generated automati-
cally in large-scale settings, with all the associated issues
in terms of quality. In this section we define an estima-
tion measure for mapping quality, namely matching accu-
racy, extended to the setting of PDMS where chained tran-
sitive mappings are used, in the form of accuracy preserva-
tion. We refer the interested reader to the vast literature on
schema matching (e.g., [5, 10, 13]), although we note that
another layer of complexity is added to schema matching in
a P2P setting, since peers do not even know which peers are
worthwhile matching against.

Based on the discussion above, a peer pi assigns a mea-
sure of accuracy (µij(q)) with the rewriting of a query q to
fit the schema of peer pj . We extend this measure to a set of
queries from pi to pj , using query frequencies as weights:

µij(Q) =
1
|Q|

∑
q∈Q

λ (q) ·µij(q) (3)

Note that this measure is directional, from pi to pj . This set-
ting is reasonable, since the peers do not necessarily share

the same set of attributes and therefore not all queries from
pi to pj will also make sense in the other direction.

When a query is posed over a schema of a peer, the net-
work will utilize data from any peer that is transitively con-
nected by schema matchings. Recall that automatic match-
ing between two schemata may involve a degree of uncer-
tainty. For transitively chained matchings, uncertainty de-
gree is amplified due to a composition of translations each
of which uncertainty affects the accuracy of the following
translations, resulting in a matching accuracy decay.

Query reformulation preservation measure, α, for a
chain of matchings (see Eq. 2) is a function of the query
matching accuracies of neighbors in the chain. Natural can-
didates for α are triangular norms (i.e., minimum, product)
extended to multiple number of arguments using their asso-
ciativity property. In this work, query reformulation chain
preservation is calculated using product over the accuracy
measurements of the transitive query translations:

αC (q) = α (MT−1,T (MT−2,T−1 · · · (M12(q)) · · · ))

=
T∏

i=2

µi−1,i (qi) (4)

where C is a chain (T, T − 1, ..., 1), for each i, qi =
Mi−1,i (qi−1), and q1 = q. Our empirical results show
that nice properties are maintained even with such a sim-
ple composition. Finally, preservation over a set of queries
in a given chain is calculated as a weighted average:

αC (Q) =
1
|Q|

∑
q∈Q

λ (q) ·αC (q) (5)

Accuracies may be calculated on the fly and passed along
reformulation chains to incrementally calculate accuracy
preservation, as shown in Example 1.

Example 1 Figure 1 provides a semantic network graph for
query qR, issued by p1. p1 calculates the translation of qR
into qS using its matchings to p3 and propagates the trans-
lated query along with its calculated preservation measure:

α13 (qR) = µ13 (qR) = 0.8

p3 translates qS to p4, calculates the accumulated preser-
vation using Eq. 4 and propagates the result to p4:

α134 (qR) = α13 (qR) · µ34 (qS) = 0.8 · 1.0 = 0.8

4 Self Organizing Semantic Topologies

Example 1 suggests that direct matching between peers
may be more accurate than transitive mappings. Hence,
peers strive to “improve” their queries reformulation qual-
ity by using direct mappings. As a goal, we would like to
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observe a topology evolution that yields network clustering,
based on interest similarity. However, peers have limited re-
sources to devote to neighbor list maintenance, so acquiring
new neighbors may be at the cost of existing ones.

Semantic topology can be evaluated from two different
points of view. First, in the decentralized setting of PDMS,
a peer does not obtain knowledge about other peer map-
pings nor can it enforce other peers to create mapping links
[14]. Under these restrictions, peers choose to couple ac-
cording to their best private knowledge. Alternatively, a
wider point of view of a collaborative network of peers will
aim at global welfare, representing the mutual interest of
peers to maximize the overall query span and accuracy.

The main challenge of self organizing semantic topolo-
gies is the lack of a global topology. Therefore, research
should focus on mechanisms for dynamic self organization
of topologies, where self-learning peers cooperatively es-
tablish semantic interoperability [2]. In our model, peers
are equipped with three useful abilities for this task. First,
upon propagating a query, a peer can calculate the refor-
mulation accuracy and preservation and forward the latter
along with the rewritten query. Secondly, upon receiving
query results, it can analyze the feedback and update its se-
mantic view of the network. Finally, it can periodically use
this information to adjust its mappings. We partition the
task of self organization into the following two subtasks:
Semantic Acquaintance: Peers can meet other peers us-
ing one of two means: (1) random connection through ping
messages as part of the underlying network protocol or (2)
connecting with peers that produce results to queries issued
by the peer. A new peer randomly connects to a set of arbi-
trary neighbors. Later on, queries issued by the peer would
be reformulated and passed along to semantically connected
peers. This way, neighbors are chosen according to their se-
mantic similarity to the selecting peer, reflecting their abil-
ity to translate its queries. Schema matching is the basic
operation used to assess similarity in our model. Therefore,
semantic acquaintance involves the selection of “good” can-
didates for schema matching among the discovered peers.
Semantic Replacement: With incomplete network knowl-
edge, newly acquainted peers are not necessarily the best
candidates for matching. Therefore, once new acquain-
tances arrive, a replacement policy will decide on whether a
new comer should replace an existing peer. A replacement
policy maintains a neighbor list by providing a decision pol-
icy for acceptance of new peers, given that each peer is lim-
ited to a finite number of neighbors.

References

[1] K. Aberer. Special topic section on peer to peer data man-
agement: Guest editor’s introduction. SIGMOD Record,
32(3):21–22, 2003.
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