The Complexity of Projections of Combinatorial Polytopes

Shmuel Onn

Technion - Israel Institute of Technology
http://ie.technion.ac.il/~onn

Joint work with student Michal Melamed
Motivation: Convex Multicriteria Optimization
Consider the problem:

\[
\max \{ f(Wx) : x \in S \}
\]
Motivation: Convex Multicriteria Optimization

Consider the problem:

\[\max \{ f(Wx) : x \in S \} \]

Where:

- **S**: Set of feasible points in \(\mathbb{Z}^n \)
- **W**: Integer \(d \times n \) matrix
- **f**: Convex function from \(\mathbb{R}^d \) to \(\mathbb{R} \)
Motivation: Convex Multicriteria Optimization

Consider the problem:

\[\max \{ f(Wx) : x \in S \} \]

Where:

- **S**: Set of feasible points in \(\mathbb{Z}^n \)
- **W**: Integer \(d \times n \) matrix
- **f**: Convex function from \(\mathbb{R}^d \) to \(\mathbb{R} \)

Interpreted as convex multicriteria optimization with objective

\[f(Wx) = f(W_1 x, \ldots, W_d x) \] trading off \(d \) linear criteria \(W_i x \)
Consider the problem:
\[\max \{ f(Wx) : x \in S \} \]

Where:

- **S**: Set of feasible points in \(\mathbb{Z}^n \)
- **W**: Integer \(d \times n \) matrix
- **f**: Convex function from \(\mathbb{R}^d \) to \(\mathbb{R} \)

We are particularly interested in one of the following situations:

- **S** is in \(\{0,1\}^n \) with some combinatorial structure
- **S** = \(\{x \in \mathbb{Z}^n : Ax \leq b\} \) is given by linear inequalities
Projections of Polytopes

The optimal solution of \(\max \{ f(Wx) : x \text{ in } S \} \)

is attained at a vertex of the projection integer polytope in \(\mathbb{R}^d \)

\[P = \text{conv}(WS) = W \text{conv}(S) \]
Projections of Polytopes

The optimal solution of $\max \{ f(Wx) : x \in S \}$ is attained at a vertex of the projection integer polytope in \mathbb{R}^d.

$$P = \text{conv}(WS) = W \text{conv}(S)$$

By enumerating the vertices of P we can solve the problem and hence are interested in bounds on the number of vertices of P.

Shmuel Onn
Projections of Polytopes

The optimal solution of \(\max \{ f(Wx) : x \text{ in } S \} \)

is attained at a vertex of the projection integer polytope in \(\mathbb{R}^d \)

\[P = \text{conv}(WS) = W \text{conv}(S) \]

By enumerating the vertices of \(P \) we can solve the problem and hence are interested in bounds on the number of vertices of \(P \).

In this talk we assume that the entries of \(W \) are small or even 0-1.

Shmuel Onn
Example 1: Projections of Arbitrary 0-1 Sets

What is the maximum number $v(d,n)$ of vertices of \(\text{conv}(WS) \) when S is any set in $\{0,1\}^n$ and W is any 0-1 valued $d \times n$ matrix?
Example 1: Projections of Arbitrary 0-1 Sets

What is the maximum number $v(d,n)$ of vertices of $\text{conv}(WS)$ when S is any set in $\{0,1\}^n$ and W is any 0-1 valued $d \times n$ matrix?

Obviously $v(d,n) \leq |WS| = O(n^d)$ and in particular $v(2,n) = O(n^2)$.
Example 1: Projections of Arbitrary 0-1 Sets

What is the maximum number $v(d,n)$ of vertices of $\text{conv}(WS)$ when S is any set in $\{0,1\}^n$ and W is any 0-1 valued $d \times n$ matrix?

Obviously $v(d,n) \leq |WS| = O(n^d)$ and in particular $v(2,n) = O(n^2)$.

The following construction for each k shows $v(2,n) = \Omega(n^{0.5})$.
Example 1: Projections of Arbitrary 0-1 Sets

What is the maximum number $v(d,n)$ of vertices of $\text{conv}(WS)$ when S is any set in $\{0,1\}^n$ and W is any 0-1 valued $d \times n$ matrix?

Obviously $v(d,n) \leq |WS| = O(n^d)$ and in particular $v(2,n) = O(n^2)$.

The following construction for each k shows $v(2,n) = \Omega(n^{0.5})$.

We demonstrate it for $k=3$. Let $n=k+k^2=12$ and let

$$W = \begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{pmatrix}$$

$$S = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{pmatrix}$$

Shmuel Onn
Example 1: Projections of Arbitrary 0-1 Sets

What is the maximum number $v(d,n)$ of vertices of $\text{conv}(WS)$ when S is any set in $\{0,1\}^n$ and W is any 0-1 valued $d \times n$ matrix?

Obviously $v(d,n) \leq |WS| = O(n^d)$ and in particular $v(2,n) = O(n^2)$.

The following construction for each k shows $v(2,n) = \Omega(n^{0.5})$.

We demonstrate it for $k=3$. Let $n=k+k^2=12$ and let

$$W = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$S = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Then $WS=\{(i,i^2) : 0 \leq i \leq k \}$ has $\Omega(n^{0.5})$ points on the moment curve.
Now let S in $\{0,1\}^n$ be a matroid of order n, that is, the set of indicating vectors of bases of a matroid with ground set $\{1,\ldots,n\}$.

Matroids
Matroids

Now let S in $\{0,1\}^n$ be a matroid of order n, that is, the set of indicating vectors of bases of a matroid with ground set $\{1, \ldots, n\}$.

For example, the indicators of spanning trees in a given connected graph, or of maximal linearly independent columns in a given matrix.
Matroids

Now let S in $\{0,1\}^n$ be a matroid of order n, that is, the set of indicating vectors of bases of a matroid with ground set $\{1,\ldots,n\}$.

For example, the indicators of spanning trees in a given connected graph, or of maximal linearly independent columns in a given matrix.

Theorem 1: For any dimension d, the maximum number of vertices of $\text{conv}(WS)$ when S is any matroid of any order n and W is any 0-1 $d \times n$ matrix is a constant $m(d)$ independent of the matroid and n.
Matroids

Now let \(S \) in \(\{0,1\}^n \) be a matroid of order \(n \), that is, the set of indicating vectors of bases of a matroid with ground set \(\{1,\ldots,n\} \).

For example, the indicators of spanning trees in a given connected graph, or of maximal linearly independent columns in a given matrix.

Theorem 1: For any dimension \(d \), the maximum number of vertices of \(\text{conv}(WS) \) when \(S \) is any matroid of any order \(n \) and \(W \) is any 0-1 \(d \times n \) matrix is a constant \(m(d) \) independent of the matroid and \(n \).

In fact \(d2^d \leq m(d) \leq 2 \sum_{k=0}^{d-1} \left(\frac{1}{2} \binom{3^d - 3}{k} \right) = O(3^{d(d-1)}) \) and hence \(m(2) = 8 \).
Matroids

Now let S in $\{0,1\}^n$ be a matroid of order n, that is, the set of indicating vectors of bases of a matroid with ground set $\{1,\ldots,n\}$.

For example, the indicators of spanning trees in a given connected graph, or of maximal linearly independent columns in a given matrix.

Theorem 1: For any dimension d, the maximum number of vertices of $\text{conv}(WS)$ when S is any matroid of any order n and W is any 0-$1 \ d \times n$ matrix is a constant $m(d)$ independent of the matroid and n.

In fact $d2^d \leq m(d) \leq \frac{1}{2} \sum_{k=0}^{d-1} \left(\frac{3^d - 3}{k} \right) = O(3^{d(d-1)})$ and hence $m(2) = 8$.

More generally, the maximum number of vertices of the projection of any matroid by any $\{0,\pm 1,\ldots, \pm p\}$ matrix W is bounded by a constant $m(d,p)$.

Shmuel Onn
Example 2: Planar Binary Projections of Matroids

The maximum number $m(2)$ of vertices of a planar projection $\text{conv}(WS)$ of any matroid S of any order n by any binary matrix W is attained by the following matrix and uniform matroid of rank 3 and order 8,

$$W = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$S = \text{U}(3,8) = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$
Example 2: Planar Binary Projections of Matroids

The maximum number $m(2)$ of vertices of a planar projection $\text{conv}(WS)$ of any matroid S of any order n by any binary matrix W is attained by the following matrix and uniform matroid of rank 3 and order 8,

$$W = \begin{pmatrix}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
\end{pmatrix}$$

$$S = U(3,8) = \begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{pmatrix}$$

where $\text{conv}(WS) =$
Now consider the set S of $l \times m \times n$ tables with given line sums:

$$S = \{x \in \mathbb{Z}_+^{l \times m \times n} : \sum_i x_{i,j,k} = a_{j,k}, \sum_j x_{i,j,k} = b_{i,k}, \sum_k x_{i,j,k} = c_{i,j}\}$$
Now consider the set S of $l \times m \times n$ tables with given line sums:

$S = \{ x \in \mathbb{Z}^{l \times m \times n}_+ : \sum_i x_{i,j,k} = a_{j,k}, \sum_j x_{i,j,k} = b_{i,k}, \sum_k x_{i,j,k} = c_{i,j} \}$

Theorem 2: For any d, the maximum number of vertices of $\text{conv}(WS)$ for any set S of $l \times m \times n$ tables with given line sums and any $\{0, \pm 1, \ldots, \pm p\}$ matrix W is a constant $t(d,p;l,m)$ independent of n and the line sums.
Multiway Tables

Now consider the set S of $l \times m \times n$ tables with given line sums:

$$S = \{x \in \mathbb{Z}_{+}^{l \times m \times n} : \sum_i x_{i,j,k} = a_{j,k}, \sum_j x_{i,j,k} = b_{i,k}, \sum_k x_{i,j,k} = c_{i,j}\}$$

Theorem 2: For any d, the maximum number of vertices of $\text{conv}(WS)$ for any set S of $l \times m \times n$ tables with given line sums and any $\{0, \pm 1, \ldots, \pm p\}$ matrix W is a constant $t(d, p; l, m)$ independent of n and the line sums.

More generally, a similar statement holds for $m_1 \times \cdots \times m_k \times n$ tables.
The Main Theorem

Definition: The edge complexity of S is the smallest integer such that any edge direction of $\text{conv}(S)$ is parallel to some v in \mathbb{Z}^n with $|v|_1 \leq e(S)$.

$\text{conv}(S)$
Definition: The edge complexity of S is the smallest integer such that any edge direction of $\text{conv}(S)$ is parallel to some v in \mathbb{Z}^n with $|v|_1 \leq e(S)$.
The Main Theorem

Definition: The edge complexity of S is the smallest integer such that any edge direction of $\text{conv}(S)$ is parallel to some v in \mathbb{Z}^n with $|v|_1 \leq e(S)$.

set E of all edge directions
The Main Theorem

Definition: The *edge complexity* of S is the smallest integer such that any *edge direction* of $\text{conv}(S)$ is parallel to some v in \mathbb{Z}^n with $|v|_1 \leq e(S)$.

Theorem 3: For any d, the maximum number of vertices of $\text{conv}(W S)$ for any set S of edge complexity $e(S)$ by any matrix W is $O(e(S) |W|^{d(d-1)})$.

Shmuel Onn
Lemma 1: If $E = \{e^1, \ldots, e^m\}$ covers all edge directions of a polytope P then the zonotope $Z = [-1, 1] e^1 + \ldots + [-1, 1] e^m$ is a refinement of P.
Lemma 1: If $E = \{e^1, \ldots, e^m\}$ covers all edge directions of a polytope P then the zonotope $Z = [-1, 1] e^1 + \ldots + [-1, 1] e^m$ is a refinement of P.

Proof

E e^1 e^2 e^3

Z P
Lemma 1: If $E = \{e^1, \ldots, e^m\}$ covers all edge directions of a polytope P, then the zonotope $Z = [-1, 1] e^1 + \ldots + [-1, 1] e^m$ is a refinement of P.

Proof

Shmuel Onn
Lemma 1: If $E = \{e^1, \ldots, e^m\}$ covers all edge directions of a polytope P then the zonotope $Z = [-1, 1] e^1 + \ldots + [-1, 1] e^m$ is a refinement of P.

Proof

Shmuel Onn
Lemma 1: If \(E = \{e^1, ..., e^m\} \) covers all edge directions of a polytope \(P \) then the zonotope \(Z = [-1, 1] e^1 + ... + [-1, 1] e^m \) is a refinement of \(P \).

Proof

Shmuel Onn
Lemma 1: If $E = \{e^1, \ldots, e^m\}$ covers all edge directions of a polytope P, then the zonotope $Z = [-1, 1] e^1 + \ldots + [-1, 1] e^m$ is a refinement of P.

Proof

Lemma 2: In \mathbb{R}^d, the zonotope $Z = \text{zone}\{e^1, \ldots, e^m\}$ has $O(m^{d-1})$ vertices.

Shmuel Onn
Proof of Main Theorem 3

- Set S in \mathbb{Z}^n with edge complexity $e(S)$
- Weight $d \times n$ matrix W
Proof of Main Theorem 3

- Set S in \mathbb{Z}^n with edge complexity $e(S)$
- Weight $d \times n$ matrix W

Each edge direction of $\text{conv}(WS)$ is parallel to Wh for some edge direction h of $\text{conv}(S)$.
Proof of Main Theorem 3

- Set S in \mathbb{Z}^n with edge complexity $e(S)$
- Weight $d \times n$ matrix W

Each edge direction of $\text{conv}(WS)$ is parallel to Wh for some edge direction h of $\text{conv}(S)$.

Hence $E := \{0, \pm 1, \ldots, \pm e(S)|W|\}^d$ covers all edge directions of $\text{conv}(WS)$.

Shmuel Onn
Proof of Main Theorem 3

- Set S in \mathbb{Z}^n with edge complexity $e(S)$
- Weight $d \times n$ matrix W

Each edge direction of $\text{conv}(WS)$ is parallel to $W h$ for some edge direction h of $\text{conv}(S)$.

Hence $E := \{0, \pm 1, \ldots, \pm e(S) | W| \}^d$ covers all edge directions of $\text{conv}(WS)$.

So $\text{zone}(E)$ refines $\text{conv}(WS)$. Since $|E| = O(e(S) | W|^d)$ it follows that $\text{conv}(WS)$ has $O(e(S) | W|^{d(d-1)})$ vertices.
Proof of Theorem 1 from Theorem 3

Theorem 1: For any d, the maximum number of vertices of $\text{conv}(WS)$ when S is any matroid of any order n and W is any $\{0, \pm 1, \ldots, \pm p\}$ valued $d \times n$ matrix is a constant $m(d,p)$ independent of the matroid and n.

Shmuel Onn
Proof of Theorem 1 from Theorem 3

Theorem 1: For any \(d \), the maximum number of vertices of \(\text{conv}(WS) \) when \(S \) is any matroid of any order \(n \) and \(W \) is any \(\{0, \pm 1, \ldots, \pm p\} \) valued \(d \times n \) matrix is a constant \(m(d,p) \) independent of the matroid and \(n \).

Proof:

For any matroid \(S \) each edge direction of \(\text{conv}(S) \) is the difference \(1_i - 1_j \) of two unit vectors. Hence the edge complexity of \(\text{conv}(S) \) for any matroid is constant \(e(S)=2 \).
Proof of Theorem 1 from Theorem 3

Theorem 1: For any d, the maximum number of vertices of $\text{conv}(WS)$ when S is any matroid of any order n and W is any $\{0, \pm 1, \ldots, \pm p\}$ valued $d \times n$ matrix is a constant $m(d,p)$ independent of the matroid and n.

Proof:

For any matroid S each edge direction of $\text{conv}(S)$ is the difference $1_i - 1_j$ of two unit vectors. Hence the edge complexity of $\text{conv}(S)$ for any matroid is constant $e(S)=2$.

For $d=2$ the refining zonotope is homothetic to $\text{conv}(WS)$ for the uniform matroid $S=U(3,8)$.

Shmuel Onn
Proof of Theorem 2 from Theorem 3

Theorem 2: For any d, the maximum number of vertices of $\conv(WS)$ for any set S of $l \times m \times n$ tables with given line sums and any $\{0, \pm 1, \ldots, \pm p\}$ matrix W is a constant $t(d,p;l,m)$ independent of n and the line sums.

Proof:

The **Graver basis** of the matrix which defines the line sum equations covers all edge directions of $\conv(S)$.

Our theory of **n-fold integer programming** implies that any element v in that Graver basis satisfies $|v|_1 \leq e(l,m)$ and hence the edge complexity of $\conv(S)$ is constant $e(S)=e(l,m)$.
Some Open Problems

Determine or bound the maximum number of vertices of $\text{conv}(WS)$ for the following sets S with W any $\{0, \pm 1, \ldots, \pm p\}$ valued $d \times n$ matrix:

- $v(d,n)$ for arbitrary 0-1 sets S and 0-1 matrix W, or even $v(2,n)$
- $m(d,p)$ for any matroid S
- $m(d)$ for any matroid S and 0-1 matrix W, we only know $m(2)=8$
- $u(d)$ for any uniform matroid S and 0-1 matrix W
- $t(d,p;l,m)$ for any set S of $l \times m \times n$ tables with given line sums
- $t(2,1;l,m)$ for projections to the plane of tables by 0-1 matrix W
- $b(d,n)$ for planar projections of Birkhoff’s polytope by 0-1 matrix W

Shmuel Onn
Reference: Michal Melamed and Shmuel Onn,
Convex integer optimization by constantly many linear counterparts
Background and more info on convex and nonlinear multicriteria optimization, Graver bases, and n-fold integer programming, can be found in my monograph available electronically from my homepage (with kind permission of EMS).