Multiway Polytopes: Universality and Convex Optimization

Shmuel Onn

Technion - Israel Institute of Technology

http://ie.technion.ac.il/~onn

Based on several papers joint with various subsets of
{De Loera, Hemmecke, Rothblum, Weismantel}

Supported in part by ISF - Israel Science Foundation
Multiway Tables and Margins

Shmuel Onn
Multiway Tables and Margins

A k-way table is an $m_1 \times \cdots \times m_k$ array of nonnegative integers.
Multiway Tables and Margins

A \textit{k-way table} is an $m_1 \times \cdots \times m_k$ array of nonnegative integers.

A \textit{margin} of a table is the \textit{sum of all entries} in some \textit{flat} of the table, so can be a \textit{line-sum}, \textit{plane-sum}, and so on.
Multiway Tables and Margins

A k-way table is an $m_1 \times \cdots \times m_k$ array of nonnegative integers. A margin of a table is the sum of all entries in some flat of the table, so can be a line-sum, plane-sum, and so on.

Example: 2-way table of size 2 x 3:

\[
\begin{array}{ccc}
0 & 1 & 2 \\
2 & 2 & 0 \\
\end{array}
\]
Multiway Tables and Margins

A k-way table is an $m_1 \times \cdots \times m_k$ array of nonnegative integers. A margin of a table is the sum of all entries in some flat of the table, so can be a line-sum, plane-sum, and so on.

Example: 2-way table of size 2×3 with line-sums:

\[
\begin{array}{ccc}
0 & 1 & 2 \\
2 & 2 & 0 \\
\end{array}
\]

Shmuel Onn
Multiway Tables and Margins

A k-way table is an $m_1 \times \cdots \times m_k$ array of nonnegative integers. A margin of a table is the sum of all entries in some flat of the table, so can be a line-sum, plane-sum, and so on.

Example: 2-way table of size 2 x 3 with line-sums:

\[
\begin{array}{ccc}
0 & 1 & 2 \\
2 & 2 & 0 \\
\end{array}
\]

\[
3 \\
2 \\
\]
Multiway Tables and Margins

A k-way table is an $m_1 \times \cdots \times m_k$ array of nonnegative integers. A margin of a table is the sum of all entries in some flat of the table, so can be a line-sum, plane-sum, and so on.

Example: 2-way table of size 2×3 with line-sums:

\[
\begin{array}{ccc}
0 & 1 & 2 & 3 \\
2 & 2 & 0 & 4 \\
2 & 3 & 2 & \\
\end{array}
\]
Multiway Tables and Margins

A \textit{k-way table} is an $m_1 \times \cdots \times m_k$ array of nonnegative integers.

A \textit{margin} of a table is the sum of all entries in some flat of the table, so can be a line-sum, plane-sum, and so on.

Example: \textit{3-way table of size 3 \times 4 \times 6:}
Multiway Tables and Margins

A *k*-way table is an $m_1 \times \cdots \times m_k$ array of nonnegative integers. A margin of a table is the sum of all entries in some flat of the table, so can be a line-sum, plane-sum, and so on.

Example: 3-way table of size $3 \times 4 \times 6$ with a plane-sum:

![3-way table diagram]
Multiway Tables and Margins

A k-way table is an $m_1 \times \cdots \times m_k$ array of nonnegative integers. A margin of a table is the sum of all entries in some flat of the table, so can be a line-sum, plane-sum, and so on.

Example: 3-way table of size $3 \times 4 \times 6$ with a line-sum:
A multiway (transportation) polytope is the set of all nonnegative $m_1 \times \cdots \times m_k$ arrays with some margins fixed.
A **multiway (transportation) polytope** is the set of all nonnegative $m_1 \times \cdots \times m_k$ arrays with some margins fixed.

The $m_1 \times \cdots \times m_k$ tables with some margins fixed are the integer points in the corresponding multiway polytope.
A multiway (transportation) polytope is the set of all nonnegative $m_1 \times \cdots \times m_k$ arrays with some margins fixed.

The $m_1 \times \cdots \times m_k$ tables with some margins fixed are the integer points in the corresponding multiway polytope.

Two main contrasting results:
A multiway (transportation) polytope is the set of all nonnegative $m_1 \times \cdots \times m_k$ arrays with some margins fixed.

The $m_1 \times \cdots \times m_k$ tables with some margins fixed are the integer points in the corresponding multiway polytope.

Two main contrasting results:

Universality Theorem: Any rational polytope is an $r \times c \times 3$ line-sum polytope.

Shmuel Onn
A multiway (transportation) polytope is the set of all nonnegative $m_1 \times \cdots \times m_k$ arrays with some margins fixed.

The $m_1 \times \cdots \times m_k$ tables with some margins fixed are the integer points in the corresponding multiway polytope.

Two main contrasting results:

Universality Theorem: Any rational polytope is an $r \times c \times 3$ line-sum polytope.

Optimization Theorem: Convex Integer Programming over $m_1 \times \cdots \times m_k \times n$ polytopes is solvable in polynomial time.

Shmuel Onn
Universality Theorem for Short 3-Way Polytopes

Theorem: Any rational polytope $P = \{ y \in \mathbb{R}^m : Ay = b \}$ is polytime representable as an $r \times c \times 3$ line-sum polytope

$$T = \left\{ x \in \mathbb{R}_+^{r \times c \times 3} : \sum_i x_{i,j,k} = w_{j,k}, \sum_j x_{i,j,k} = v_{i,k}, \sum_k x_{i,j,k} = u_{i,j} \right\}$$

(there is a coordinate-erasing projection from $\mathbb{R}^{r \times c \times 3}$ to \mathbb{R}^m giving a bijection between T and P and between their integer points).

Shmuel Onn
Universality Theorem for Short 3-Way Polytopes

Theorem: Any rational polytope \(P = \{ y \in \mathbb{R}^m : Ay = b \} \) is polytime representable as an \(r \times c \times 3 \) line-sum polytope

\[
T = \left\{ x \in \mathbb{R}^{r \times c \times 3}_+ : \sum_i x_{i,j,k} = w_{j,k}, \sum_j x_{i,j,k} = v_{i,k}, \sum_k x_{i,j,k} = u_{i,j} \right\}
\]

(there is a coordinate-erasing projection from \(\mathbb{R}^{r \times c \times 3} \) to \(\mathbb{R}^m \) giving a bijection between \(T \) and \(P \) and between their integer points).

Any linear/integer program is polytime representable as an \(r \times c \times 3 \) multiway program.

Shmuel Onn
Universality Theorem for Short 3-Way Polytopes

Theorem: Any rational polytope $P = \{ y \in \mathbb{R}^m_+ : Ay = b \}$ is polytime representable as an $r \times c \times 3$ line-sum polytope

$$T = \left\{ x \in \mathbb{R}_+^{r \times c \times 3} : \sum_i x_{i,j,k} = w_{j,k}, \sum_j x_{i,j,k} = v_{i,k}, \sum_k x_{i,j,k} = u_{i,j} \right\}$$

(there is a coordinate-erasing projection from $\mathbb{R}^{r \times c \times 3}$ to \mathbb{R}^m giving a bijection between T and P and between their integer points).

→ Any linear/integer program is polytime representable as an $r \times c \times 3$ multiway program.

→ Optimization over $r \times c \times 3$ tables is NP-hard.
Universality Theorem for Short 3-Way Polytopes

Theorem: Any rational polytope \(P = \{ y \in \mathbb{R}^m_+ : Ay = b \} \) is polytime representable as an \(r \times c \times 3 \) line-sum polytope

\[
T = \left\{ x \in \mathbb{R}_{+}^{r \times c \times 3} : \sum_i x_{i,j,k} = w_{j,k}, \sum_j x_{i,j,k} = v_{i,k}, \sum_k x_{i,j,k} = u_{i,j} \right\}
\]

(there is a coordinate-erasing projection from \(\mathbb{R}^{r \times c \times 3} \) to \(\mathbb{R}^m \) giving a bijection between \(T \) and \(P \) and between their integer points).

\[\rightarrow\] Any linear/integer program is polytime representable as an \(r \times c \times 3 \) multiway program.

\[\rightarrow\] Optimization over \(r \times c \times 3 \) tables is NP-hard.

\[\rightarrow\] Implications on the existence of a strongly polynomial time algorithm for linear programming?

Shmuel Onn
Universality Theorem for Short 3-Way Polytopes

Theorem: Any rational polytope \(P = \{ y \in \mathbb{R}^m : Ay = b \} \) is polytime representable as an \(r \times c \times 3 \) line-sum polytope

\[
T = \left\{ x \in \mathbb{R}^{r \times c \times 3}_+ : \sum_i x_{i,j,k} = w_{j,k}, \sum_j x_{i,j,k} = v_{i,k}, \sum_k x_{i,j,k} = u_{i,j} \right\}
\]

(there is a coordinate-erasing projection from \(\mathbb{R}^{r \times c \times 3} \) to \(\mathbb{R}^m \) giving a bijection between \(T \) and \(P \) and between their integer points).

\[\rightarrow\] Any linear/integer program is polytime representable as an \(r \times c \times 3 \) multiway program.

\[\rightarrow\] Optimization over \(r \times c \times 3 \) tables is NP-hard.

\[\rightarrow\] Implications on the existence of a strongly polynomial time algorithm for linear programming?

\[\rightarrow\] Implications on the rational version of Hilbert’s 10th problem on the decidability of the realization problem for polytopes?
Table Security (confidential data disclosure)

Agencies such as the census bureau and center for health statistics allow public web-access to information on their data bases, but are concerned about confidentiality of individuals.
Table Security (confidential data disclosure)

Agencies such as the census bureau and center for health statistics allow public web-access to information on their data bases, but are concerned about confidentiality of individuals.

Common strategy: release margins but not table entries.

Shmuel Onn
Agencies such as the census bureau and center for health statistics allow public web-access to information on their data bases, but are concerned about confidentiality of individuals.

Common strategy: release margins but not table entries.

Question: how does the set of values that can occur in a specific entry in all tables with the released margins look like?

Shmuel Onn
Fact: for k-way tables with fixed hyperplane-sums, the set of values in an entry is always an interval.

Example: the values 0, 2 occur in an entry:

\[
\begin{array}{ccc}
0 & 1 & 2 \\
2 & 2 & 0 \\
2 & 3 & 2 \\
\end{array}
\quad \quad \quad \quad \quad
\begin{array}{ccc}
2 & 1 & 0 \\
0 & 2 & 2 \\
2 & 3 & 2 \\
\end{array}
\]
Fact: for k-way tables with fixed hyperplane-sums, the set of values in an entry is always an interval.

Example: the values 0, 2 occur in an entry:

Therefore, also the value 1 occurs in that entry:
In contrast we have the following universality:

Theorem: For every finite set S of nonnegative integers, there are r, c and line-sums for $r \times c \times 3$ tables such that the set of values occurring in a fixed entry in all possible tables with these line-sums is precisely S.
In contrast we have the following universality:

Theorem: For every finite set S of nonnegative integers, there are r, c and line-sums for $r \times c \times 3$ tables such that the set of values occurring in a fixed entry in all possible tables with these line-sums is precisely S.

Proof: Given $S = \{s_1, \ldots, s_m\}$, let

$$P := \{y \in \mathbb{R}_+^{m+1} : y_0 - \sum_{i=1}^m s_i y_i = 0, \sum_{i=1}^m y_i = 1\}.$$

Lift P using the universality theorem to $r \times c \times 3$ line-sum polytope T.

Shmuel Onn
Example: set of entry values with a gap
Example: set of entry values with a gap

Consider the following line-sums for $6 \times 4 \times 3$ tables:
Example: set of entry values with a gap

Consider the following line-sums for $6 \times 4 \times 3$ tables:

Consider the designated entry:
Example: set of entry values with a gap

Consider the following line-sums for $6 \times 4 \times 3$ tables:

The only values occurring in that entry in all possible tables with these line-sums are 0, 2

Shmuel Onn
More Consequences

Shmuel Onn
More Consequences

Universality Theorem for Toric Ideals: Every toric ideal is embeddable in a toric ideal of $r \times c \times 3$ tables with fixed line-sums.
More Consequences

Universality Theorem for Toric Ideals: Every toric ideal is embeddable in a toric ideal of $r \times c \times 3$ tables with fixed line-sums.

Solution of the Vlach Problems: Many problems of the cornerstone paper by M. Vlach on transportation polytopes resolved.
More Consequences

Universality Theorem for Toric Ideals: Every toric ideal is embeddable in a toric ideal of $r \times c \times 3$ tables with fixed line-sums.

Solution of the Vlach Problems: Many problems of the corner stone paper by M. Vlach on transportation polytopes resolved.

Universality Theorem for Bitransportation Polytopes:

Theorem: Any rational polytope $P = \{y \in \mathbb{R}_+^m : Ay = b\}$ is polytime representable as an $n \times n$ bitransportation polytope

$$B = \left\{ (x^1, x^2) \in \oplus_2 \mathbb{R}_+^{n \times n} : \sum_j x^k_{i,j} = r^k_i, \sum_i x^k_{i,j} = c^k_j, x^1_{i,j} + x^2_{i,j} \leq u_{i,j} \right\}$$

Shmuel Onn
Convex Integer Optimization
over Long Multiway Polytopes

Shmuel Onn
Consider more generally the following convex integer programming problem

\[\text{max} \{ c(w_1x, \ldots, w_dx) : x \geq 0, \ Ax = b, \ x \text{ integer} \} \]

where \(w_1, \ldots, w_d \) are linear forms and \(c \) is a convex functional on \(\mathbb{R}^d \).
Convex Integer Optimization over Long Multiway Polytopes

Consider more generally the following convex integer programming problem

$$\max \{c(w_1 x, \ldots, w_d x) : x \geq 0, \ Ax = b, \ x \ \text{integer}\}$$

where w_1, \ldots, w_d are linear forms and c is a convex functional on \mathbb{R}^d.

The problem can be interpreted as balancing d given linear criteria. It is generally intractable even for fixed $d=1$, since standard linear integer programming is the special case with c the identity on \mathbb{R}.

Shmuel Onn
Consider more generally the following convex integer programming problem
\[
\max \{ c(w_1 x, \ldots, w_d x) : x \geq 0, \quad Ax = b, \quad x \text{ integer} \}
\]
where \(w_1, \ldots, w_d \) are linear forms and \(c \) is a convex functional on \(\mathbb{R}^d \).

The problem can be interpreted as balancing \(d \) given linear criteria. It is generally intractable even for fixed \(d=1 \), since standard linear integer programming is the special case with \(c \) the identity on \(\mathbb{R} \).

Nonetheless, we can show the following (and more):

Theorem: Fix \(d, m_1, \ldots, m_k \). Then convex integer programming over any \(m_1 \times \cdots \times m_k \times n \) multiway polytope is solvable in polynomial oracle-time for any margins, \(w_1, \ldots, w_d \), and convex \(c \) presented by comparison oracle.

Shmuel Onn
Proof Ingredient 1: Edge-Directions
Proof Ingredient 1: Edge-Directions

Exploit edge symmetry of the integer hull

\[P = \text{conv}\{x : x \geq 0, \ Ax = b, \ x \text{ integer}\} \subseteq \mathbb{R}^n \]
Proof Ingredient 1: Edge-Directions

Exploit edge symmetry of the integer hull

\[P = \text{conv}\{x : x \geq 0, \ Ax = b, \ x \text{ integer}\} \subseteq \mathbb{R}^n \]
Proof Ingredient 1: Edge-Directions

Exploit edge symmetry of the integer hull

\[P = \text{conv}\{x : x \geq 0, \ Ax = b, \ x \text{ integer}\} \subseteq \mathbb{R}^n \]
Proof Ingredient 1: Edge-Directions

Exploit edge symmetry of the integer hull

\[P = \text{conv}\{x : x \geq 0, \ Ax = b, \ x \text{ integer}\} \subseteq \mathbb{R}^n \]
Proof Ingredient 1: Edge-Directions

Exploit edge symmetry of the integer hull

\[P = \text{conv}\{x : x \geq 0, \ Ax = b, \ x \text{ integer}\} \subseteq \mathbb{R}^n \]

Lemma 1: Fix \(d \). Then, given a set \(E \) covering all edge-directions of \(P \), the convex integer programming problem over \(P \) is reducible to solving polynomially many linear integer programming counterparts over \(P \).
Zonotope Refinement and Construction

Prop. 1: If \(E = \{e^1, \ldots, e^m\} \) covers all edge-directions of a polytope \(P \) then the zonotope \(Z = [-1, 1] e^1 + \ldots + [-1, 1] e^m \) is a refinement of \(P \).

(Minkowsky, Grunbaum, \ldots,)
Prop. 1: If $E = \{e^1, \ldots, e^m\}$ covers all edge-directions of a polytope P then the zonotope $Z = [-1, 1] e^1 + \ldots + [-1, 1] e^m$ is a refinement of P.
Prop. 1: If $E = \{e^1, \ldots, e^m\}$ covers all edge-directions of a polytope P then the zonotope $Z = [-1, 1] e^1 + \ldots + [-1, 1] e^m$ is a refinement of P.
Prop. 1: If $E = \{e^1, \ldots, e^m\}$ covers all edge-directions of a polytope P, then the zonotope $Z = [-1, 1] e^1 + \ldots + [-1, 1] e^m$ is a refinement of P.
Zonotope Refinement and Construction

Prop. 1: If $E = \{e^1, \ldots, e^m\}$ covers all edge-directions of a polytope P then the zonotope $Z = [-1, 1] e^1 + \ldots + [-1, 1] e^m$ is a refinement of P.

Shmuel Onn
Zonotope Refinement and Construction

Prop. 1: If \(E = \{ e^1, \ldots, e^m \} \) covers all edge-directions of a polytope \(P \), then the zonotope \(Z = [-1, 1] e^1 + \ldots + [-1, 1] e^m \) is a refinement of \(P \).

Prop. 2: In \(\mathbb{R}^d \), the zonotope \(Z \) can be constructed from \(E = \{ e^1, \ldots, e^m \} \) along with a vector \(a_i \) in the cone of every vertex in \(O(m^{d-1}) \) operations.

(Edelsbrunner, Gritzmann, Orouk, Seidel, Sharir, Sturmfels, …)
The Algorithm Establishing Lemma 1

Input: Polytope P in \mathbb{R}^n given via A, b, set E covering its edge-directions, $d \times n$ matrix w, and convex functional c on \mathbb{R}^d given by comparison oracle.
The Algorithm Establishing Lemma 1

Input: Polytope P in \mathbb{R}^n given via A,b, set E covering its edge-directions, $d \times n$ matrix w, and convex functional c on \mathbb{R}^d given by comparison oracle.
The Algorithm Establishing Lemma 1

Input: Polytope P in \mathbb{R}^n given via A, b, set E covering its edge-directions, $d \times n$ matrix w, and convex functional c on \mathbb{R}^d given by comparison oracle.

1. Construct the zonotope Z generated by the projection $w \cdot E$, and find a_i in each normal cone.
The Algorithm Establishing Lemma 1

Input: Polytope \(P \) in \(\mathbb{R}^n \) given via \(A, b \), set \(E \) covering its edge-directions, \(d \times n \) matrix \(w \), and convex functional \(c \) on \(\mathbb{R}^d \) given by comparison oracle.

1. Construct the zonotope \(Z \) generated by the projection \(w \cdot E \), and find \(a_i \) in each normal cone

2. Lift each \(a_i \) in \(\mathbb{R}^d \) to \(b_i = w^T \cdot a_i \) in \(\mathbb{R}^n \) and solve linear integer programming with objective \(b_i \) over \(P \)

Shmuel Onn
The Algorithm Establishing Lemma 1

Input: Polytope P in \mathbb{R}^n given via A,b, set E covering its edge-directions, $d \times n$ matrix w, and convex functional c on \mathbb{R}^d given by comparison oracle.

1. Construct the zonotope Z generated by the projection $w \cdot E$, and find a_i in each normal cone.

2. Lift each a_i in \mathbb{R}^d to $b_i = w^T \cdot a_i$ in \mathbb{R}^n and solve linear integer programming with objective b_i over P.

3. Obtain the vertex v_i of P and the vertex $w \cdot v_i$ of $w \cdot P$.

Shmuel Onn
The Algorithm Establishing Lemma 1

Input: Polytope P in \mathbb{R}^n given via A, b, set E covering its edge-directions, $d \times n$ matrix w, and convex functional c on \mathbb{R}^d given by comparison oracle.

1. Construct the zonotope Z generated by the projection $w \cdot E$, and find a_i in each normal cone.

2. Lift each a_i in \mathbb{R}^d to $b_i = w^T \cdot a_i$ in \mathbb{R}^n and solve linear integer programming with objective b_i over P.

3. Obtain the vertex v_i of P and the vertex $w \cdot v_i$ of $w \cdot P$.

4. Output any v_i attaining maximum value $c(w \cdot v_i)$ using comparison oracle.
Proof ingredient 2: Graver Bases

Shmuel Onn
Proof ingredient 2: Graver Bases

A vector u is conformal to vector v if $|u_i| \leq |v_i|$ and $u_iv_i \geq 0$ for all i.
Proof ingredient 2: Graver Bases

A vector u is conformal to vector v if $|u_i| \leq |v_i|$ and $u_i v_i \geq 0$ for all i.

The Graver basis of an integer matrix A is the set of conformal-minimal nonzero integer dependencies on A, i.e. vectors with $Av = 0$. For instance, the Graver basis of $A = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$ is $\pm \{ [2 -1 0], [0 -1 2], [1 0 -1], [1 -1 1] \}$.
Proof ingredient 2: Graver Bases

A vector u is conformal to vector v if $|u_i| \leq |v_i|$ and $u_i v_i \geq 0$ for all i.

The Graver basis of an integer matrix A is the set of conformal-minimal nonzero integer dependencies on A, i.e. vectors with $Av = 0$. For instance, the Graver basis of $A = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$ is $\pm \{ \begin{bmatrix} 2 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 & 1 \end{bmatrix} \}$.

Lemma 2: The Graver basis of A allows to augment in polynomial time any feasible solution to an optimal solution of any linear integer program

$$\max \{ wx : x \geq 0, \ Ax = b, \ x \text{ integer} \}$$
Proof ingredient 2: Graver Bases

A vector u is conformal to vector v if $|u_i| \leq |v_i|$ and $u_i v_i \geq 0$ for all i.

The Graver basis of an integer matrix A is the set of conformal-minimal nonzero integer dependencies on A, i.e. vectors with $Av = 0$. For instance, the Graver basis of $A = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$ is $\pm \{ \begin{bmatrix} 2 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 & 1 \end{bmatrix} \}$.

Lemma 2: The Graver basis of A allows to augment in polynomial time any feasible solution to an optimal solution of any linear integer program

\[
\max \{ wx : x \geq 0, \ A x = b, \ x \text{ integer} \}
\]

Lemma 3: The Graver basis of A covers all edge-directions of any fiber $P = \text{conv}\{ x : x \geq 0, \ A x = b, \ x \text{ integer} \}$
Proof ingredient 2: Graver Bases

A vector u is conformal to vector v if $|u_i| \leq |v_i|$ and $u_i v_i \geq 0$ for all i.

The Graver basis of an integer matrix A is the set of conformal-minimal nonzero integer dependencies on A, i.e. vectors with $Av = 0$. For instance, the Graver basis of $A = [1 2 1]$ is $\pm \{ [2 -1 0], [0 -1 2], [1 0 -1], [1 -1 1] \}$.

Lemma 2: The Graver basis of A allows to augment in polynomial time any feasible solution to an optimal solution of any linear integer program

\[
\max \{ wx : x \geq 0, \ A x = b, \ x \text{ integer} \}
\]

Lemma 3: The Graver basis of A covers all edge-directions of any fiber

\[
P = \text{conv}\{ x : x \geq 0, \ A x = b, \ x \text{ integer} \}
\]

Lemma 4: The Graver basis of the matrix A defining the margin equations for any $m_1 \times \cdots \times m_k \times n$ polytope is polytime computable.

Shmuel Onn
Conclusion
Conclusion

Combining Lemmas 1 – 4 plus some additional components, we obtain the optimization theorem for long k-way polytopes:

Theorem: Fix d, m_1, \ldots, m_k. Then convex integer programming over any $m_1 \times \cdots \times m_k \times n$ multiway polytope is solvable in polynomial oracle-time for any margins, w_1, \ldots, w_d, and convex c presented by comparison oracle.

Shmuel Onn
Conclusion

Combining Lemmas 1 – 4 plus some additional components, we obtain the optimization theorem for long k-way polytopes:

Theorem: Fix d, m_1, \ldots, m_k. Then convex integer programming over any $m_1 \times \cdots \times m_k \times n$ multiway polytope is solvable in polynomial oracle-time for any margins, w_1, \ldots, w_d, and convex c presented by comparison oracle.

In contrast, short 3-way polytopes are universal:

Theorem: Any rational polytope is an $r \times c \times 3$ line-sum 3-way polytope.

Shmuel Onn