N-Fold Integer Programming
and
Multicommodity Flows

Shmuel Onn

Technion - Israel Institute of Technology
http://ie.technion.ac.il/~onn

Based on several papers joint with several co-authors including
Berstein, De Loera, Hemmecke, Lee, Rothblum, Weismantel
Prologue:

Nonlinear Discrete Optimization
Setup for Nonlinear Discrete Optimization

The problem is: \[\min/\max \{ f(Wx) : x \in S \} \]
Setup for Nonlinear Discrete Optimization

The problem is: \(\min/\max \{ f(Wx) : x \in S \} \)

The data is a triple:
Setup for Nonlinear Discrete Optimization

The **problem** is: \[\min/\max \{ f(Wx) : x \in S \} \]

The **data** is a triple:

- **S**: Set of feasible points in \(\mathbb{Z}^n \)
Setup for Nonlinear Discrete Optimization

The problem is: \[\min/\max \{ f(Wx) : x \in S \} \]

The data is a triple:

- \(S \): Set of feasible points in \(\mathbb{Z}^n \)
- \(W \): Integer \(d \times n \) matrix
Setup for Nonlinear Discrete Optimization

The problem is:

\[\min/\max \{ f(Wx) : x \text{ in } S \} \]

The data is a triple:

- **S**: Set of feasible points in \(\mathbb{Z}^n \)
- **W**: Integer \(d \times n \) matrix
- **f**: Function from \(\mathbb{Z}^d \) to \(\mathbb{R} \)
Setup for Nonlinear Discrete Optimization

The **problem** is: \[\min/\max \{ f(Wx) : x \text{ in } S \} \]

The **data** is a triple:

- **S**: Set of feasible points in \(\mathbb{Z}^n\)
- **W**: Integer \(d \times n\) matrix
- **f**: Function from \(\mathbb{Z}^d\) to \(\mathbb{R}\)

This setup enables:

- Determination of broad classes of triples \(S, W, f\) solvable efficiently (deterministically, randomly, or approximately)
Setup for Nonlinear Discrete Optimization

The problem is: \[\min/\max \{ f(Wx) : x \in S \} \]

The data is a triple:

- **S**: Set of feasible points in \(\mathbb{Z}^n \)
- **W**: Integer \(d \times n \) matrix
- **f**: Function from \(\mathbb{Z}^d \) to \(\mathbb{R} \)

This setup enables:

- **Determination of broad classes** of triples \(S, W, f \) solvable efficiently (deterministically, randomly, or approximately)

- **Interpretation as multi-objective optimization** with objective \[f(Wx) = f(W_1x, \ldots, W_dx) \] balancing criteria \(W_i x \) of \(d \) players

Shmuel Onn
Setup for Nonlinear Discrete Optimization

The problem is:
\[
\min/\max \{ f(Wx) : x \text{ in } S \}
\]

The data is a triple:

- **S**: Set of feasible points in \(\mathbb{Z}^n \)
- **W**: Integer \(d \times n \) matrix
- **f**: Function from \(\mathbb{Z}^d \) to \(\mathbb{R} \)
Setup for Nonlinear Discrete Optimization

The problem is: \(\min/\max \{ f(Wx) : x \in S \} \)

The data is a triple:

- \(S \): Set of feasible points in \(\mathbb{Z}^n \)
- \(W \): Integer \(d \times n \) matrix
- \(f \): Function from \(\mathbb{Z}^d \) to \(\mathbb{R} \) given by comparison oracle
Setup for Nonlinear Discrete Optimization

The problem is: \(\min/\max \{ f(Wx) : x \in S \} \)

The data is a triple:

- **S**: Set of feasible points in \(\mathbb{Z}^n \)
- **W**: Integer \(d \times n \) matrix
- **f**: Function from \(\mathbb{Z}^d \) to \(\mathbb{R} \) given by comparison oracle

The presentation of \(S \) splits the theory into two branches:
Setup for Nonlinear Discrete Optimization

The problem is: \[\min/\max \{ f(Wx) : x \in S \} \]

The data is a triple:

- **S**: Set of feasible points in \(\mathbb{Z}^n \)
- **W**: Integer \(d \times n \) matrix
- **f**: Function from \(\mathbb{Z}^d \) to \(\mathbb{R} \) given by comparison oracle

The presentation of \(S \) splits the theory into two branches:

- **Combinatorial Optimization**:
 \(S \) in \(\{0,1\}^n \) given by oracle (membership, linear-optimization, etc.)
Setup for Nonlinear Discrete Optimization

The problem is: \[\min/\max \{ f(Wx) : x \in S \} \]

The data is a triple:

- **S**: Set of feasible points in \(Z^n \)
- **W**: Integer \(d \times n \) matrix
- **f**: Function from \(Z^d \) to \(R \) given by comparison oracle

The presentation of \(S \) splits the theory into two branches:

- **Combinatorial Optimization**: \(S \) in \(\{0,1\}^n \) given by oracle (membership, linear-optimization, etc.)

- **Integer Programming**: \(S = \{ x \in Z^n : A(x) \leq 0 \} \) given by inequalities

Shmuel Onn
Example:

Convex Discrete Maximization
Convex Discrete Maximization

Theorem 0: For S in \mathbb{Z}^n given by linear-optimization oracle, $d \times n$ matrix W with d fixed, and convex function f, can solve in polynomial-time

$$\max \{ f(Wx) : x \text{ in } S \}$$
Convex Discrete Maximization

Theorem 0: For S in \mathbb{Z}^n given by linear-optimization oracle, $d \times n$ matrix W with d fixed, and convex function f, can solve in polynomial-time

$$\max \{ f(Wx) : x \in S \}$$

when S is endowed with a set E of all edge-directions of $\text{conv}(S)$

Reference: Convex combinatorial optimization (Onn, Rothblum)
Journal of Discrete and Computational Geometry
Convex Discrete Maximization

Theorem 0: For S in \mathbb{Z}^n given by linear-optimization oracle, $d \times n$ matrix W with d fixed, and convex function f, can solve in polynomial-time

$$\max \{ f(Wx) : x \in S \}$$

when S is endowed with a set E of all edge-directions of $\text{conv}(S)$
Convex Discrete Maximization

Theorem 0: For S in \mathbb{Z}^n given by linear-optimization oracle, $d \times n$ matrix W with d fixed, and convex function f, can solve in polynomial-time

$$\max \{ f(Wx) : x \in S \}$$

when S is endowed with a set E of all edge-directions of $\text{conv}(S)$
Convex Discrete Maximization

Theorem 0: For S in \mathbb{Z}^n given by linear-optimization oracle, $d \times n$ matrix W with d fixed, and convex function f, can solve in polynomial-time

$$\max \{ f(Wx) : x \in S \}$$

when S is endowed with a set E of all edge-directions of $\text{conv}(S)$
Convex Discrete Maximization – Some Applications

<table>
<thead>
<tr>
<th>Some edge-behaved polytopes</th>
<th>And their applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matroid polytopes: pairs $1_i - 1_j$
Also poly-matroids</td>
<td>e.g. spanning trees,
experimental design</td>
</tr>
<tr>
<td>High dimensional
Transportation polytopes:</td>
<td>e.g. vector partitioning,
privacy in data bases</td>
</tr>
<tr>
<td>Integer-hulls of
N-fold integer programs:</td>
<td>Many,
some to be discussed below</td>
</tr>
</tbody>
</table>
N-Fold Integer Programming
The *n*-fold product of an \((r+s) \times t\) bimatrix \(A\) is the following \((r+ns) \times nt\) matrix:

\[
A^{(n)} = \begin{pmatrix}
A_1 & A_1 & A_1 & \cdots & A_1 \\
A_2 & 0 & 0 & \cdots & 0 \\
0 & A_2 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & A_2
\end{pmatrix}.
\]
Theorem 1: Linear optimization in polynomial time:

\[\max \{ wx : A^{(n)}x = b, \; l \leq x \leq u, \; x \text{ in } \mathbb{Z}^{n^t} \} \]
Five Theorems on N-Fold Integer Programming

Theorem 1: Linear optimization in polynomial time:

$$\max \{ wx : A^{(n)}x = b, \ l \leq x \leq u, \ x \text{ in } \mathbb{Z}^{nt} \}$$

$$A^{(n)} = \begin{pmatrix}
A_1 & A_1 & A_1 & \cdots & A_1 \\
A_2 & 0 & 0 & \cdots & 0 \\
0 & A_2 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & A_2 \\
\end{pmatrix}$$

with A fixed $(r+s) \times t$ bimatrix

Shmuel Onn
Five Theorems on N-Fold Integer Programming

Theorem 1: Linear optimization in polynomial time:

\[
\max \{ wx : A^{(n)}x = b, \quad l \leq x \leq u, \quad x \in \mathbb{Z}^{nt} \}
\]

Reference: N-fold integer programming (De Loera, Hemmecke, Onn, Weismantel)
Discrete Optimization (Volume in memory of George Dantzig)
Theorem 2: Separable convex minimization in polynomial time:

$$\min \{ \sum f_i(x_i) : A^{(n)}x = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^n \}$$

Reference: A polynomial oracle-time algorithm for convex integer minimization (Hemmecke, Onn, Weismantel) Mathematical Programming
Theorem 3: Integer point l_p-nearest to x in polynomial time:

$$\min \{ |x - x|^p : A^{(n)}x = b, \ l \leq x \leq u, \ x \in \mathbb{Z}^{nt} \}$$
Theorem 4: Weighted separable convex minimization in polytime:

\[\min \{ f(W^{(n)}x) : A^{(n)}x = b, \ l \leq x \leq u, \ L \leq W^{(n)}x \leq U, \ x \in \mathbb{Z}^{nt} \} \]
Theorem 5: Weighted convex maximization in polynomial time:

\[
\max \{ f(Wx) : A^{(n)}x = b, \quad l \leq x \leq u, \quad x \in \mathbb{Z}^{nt} \}
\]

Multiway Tables
Multiway Tables

Consider optimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins:
Multiway Tables

Consider optimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins:

\[
\begin{bmatrix}
6 & 3 & 3 & 0 \\
3 & 2 & 0 & 1 \\
0 & 5 & 0 & 1 \\
0 & 1 & 0 & 9 \\
\end{bmatrix}
\]

Such tables form an n-fold program $\{ x : A^{(n)} x = b, \ x \geq 0, \ x \text{ integer} \}$ for suitable A depending on m_1, \ldots, m_k where A_1 controls the equations of margins involving summation over layers, whereas A_2 controls the equations of margins involving summation within a single layer at a time.
Multiway Tables

Consider optimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins:

Corollary: Nonlinear optimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins can be done in polynomial-time.

Shmuel Onn
Consider optimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins:

Corollary: Nonlinear optimization over $m_1 \times \cdots \times m_k \times n$ tables with given margins can be done in polynomial-time

Universality Theorem for 3-way tables (De Loera, Onn, SIAM J. Optim.):
Every integer program is one over $3 \times m \times n$ tables with given line-sums
Multicommodity Flows
Many Commodity Transshipment

Find integer \textit{multicommodity transshipment} x of \textit{minimum cost} satisfying \textit{vertex demands} d and \textit{edge capacities} u in \textit{digraph} G.
Many Commodity Transshipment

Find integer multicommodity transshipment x of minimum cost satisfying vertex demands d and edge capacities u in digraph G.

The cost of flow x_e over edge e can be either standard linear or more realistic nonlinear increasing function accounting for congestion over channel when subject to heavy traffic or communication load, such as

$$f_e(x_e) = c_e x_e^{a_e}$$
Small Example
Data:

Small Example

Shmuel Onn
Data:

digraph G
Small Example

Data:

digraph G

edge capacities u_e unlimited

Shmuel Onn
Data:
digraph G
edge capacities u_e unlimited
edge costs $f_e(x_e) = x_e^2$
Data:

digraph G
edge capacities u_e unlimited
edge costs $f_e(x_e) = x_e^2$
vertex demands - two commodities:

$d^1 = (3\ -1\ -2)$
$d^2 = (-3\ 2\ 1)$
Data:

digraph G
edge capacities $u_e = \text{unlimited}$
edge costs $f_e(x_e) = x_e^2$
vertex demands -
two commodities:

$d^1 = (3 \quad -1 \quad -2)$
$d^2 = (-3 \quad 2 \quad 1)$

Solution:

$X^1 = (3 \quad 2 \quad 0)$
$X^2 = (0 \quad 2 \quad 3)$

Shmuel Onn
Small Example

Data:
- digraph G
- edge capacities u_e unlimited
- edge costs $f_e(x_e) = x_e^2$
- vertex demands - two commodities:
 - $d^1 = (3, -1, -2)$
 - $d^2 = (-3, 2, 1)$

Solution:
- $X^1 = (3, 2, 0)$
- $X^2 = (0, 2, 3)$

Cost:
- $f(x) = (3+0)^2 + (2+2)^2 + (0+3)^2 = 34$
Many Commodity Transshipment

Find integer multicommodity transshipment x of minimum f cost satisfying vertex demands d and edge capacities u in digraph G

Let D be the $s \times t$ vertex-edge incidence matrix of G
Many Commodity Transshipment

Find integer multicommodity transshipment x of minimum cost satisfying vertex demands d and edge capacities u in digraph G

Let D be the $s \times t$ vertex-edge incidence matrix of G

Let x^k in \mathbb{Z}^+ be flow of commodity $k=0,1,...,n$ with x^0 slack commodity
Many Commodity Transshipment

Find integer multicommodity transshipment x of minimum f cost satisfying vertex demands d and edge capacities u in digraph G

Let D be the $s \times t$ vertex-edge incidence matrix of G

Let x^k in \mathbb{Z}^t be flow of commodity $k=0,1,...,n$ with x^0 slack commodity

Then the multicommodity transshipment problem can be written as

$$\min \{ f(u - x^0) : \sum x^k = u, \ D x^k = d^k, \ x \geq 0, \ x \in \mathbb{Z}^{(n+1)t} \}$$
Many Commodity Transshipment

Find integer multicommodity transshipment x of minimum f cost
satisfying vertex demands d and edge capacities u in digraph G

Let D be the $s \times t$ vertex-edge incidence matrix of G

Let x^k in \mathbb{Z}^t be flow of commodity $k=0,1,...,n$ with x^0 slack commodity

Then the multicommodity transshipment problem can be written as

$$\min \{ f(u - x^0) : \sum x^k = u, \ Dx^k = d^k, \ x \geq 0, \ x \text{ in } \mathbb{Z}^{(n+1)t} \}$$

This is an $(n+1)$-fold integer program over the $(t+s) \times t$ bimatrix A with first block A_1 the $t \times t$ identity and second block $A_2 = D$
Many Commodity Transshipment

Find integer \textit{multicommodity transshipment} \(x \) of minimum \(f \) cost satisfying \(\text{vertex demands} \ d \) and \(\text{edge capacities} \ u \) in \(\text{digraph} \ G \)

Let \(D \) be the \(s \times t \) vertex-edge incidence matrix of \(G \)

Let \(x^k \) in \(\mathbb{Z}^t \) be flow of commodity \(k=0,1,...,n \) with \(x^0 \) slack commodity

Then the \textit{multicommodity transshipment problem} can be written as

\[
\min \left\{ f(u - x^0) : \sum x^k = u, \ D x^k = d^k, \ x \geq 0, \ x \text{ in } \mathbb{Z}^{(n+1)t} \right\}
\]

This is an \((n+1)\)-fold integer program over the \((t+s) \times t \) bimatrix \(A \) with first block \(A_1 \) the \(t \times t \) identity and second block \(A_2 = D \)

\textbf{Corollary:} For fixed digraph \(G \) and variable number \(n \) of commodities can solve the \textit{n-commodity transshipment problem} in polynomial time

Shmuel Onn
Many Commodity Transshipment

Find integer multicommodity transshipment x of minimum f cost satisfying vertex demands d and edge capacities u in digraph G

Let D be the $s \times t$ vertex-edge incidence matrix of G

Let x^k in \mathbb{Z}^t be flow of commodity $k = 0, 1, \ldots, n$ with x^0 slack commodity

Then the multicommodity transshipment problem can be written as

$$\min \{ f(u - x^0) : \sum x^k = u, \ D x^k = d^k, \ x \geq 0, \ x \in \mathbb{Z}^{(n+1)t} \}$$

This is an $(n+1)$-fold integer program over the $(t+s) \times t$ bimatrix A with first block A_1 the $t \times t$ identity and second block $A_2 = D$

Corollary: For fixed s and variable n can solve the n-commodity transshipment problem over any s-digraph in polynomial time
Multicommodity Transportation

Find integer k-commodity transportation x of minimum f cost from m suppliers to n consumers in the bipartite digraph $K_{m,n}$.
Multicommodity Transportation

Find integer k-commodity transportation x of minimum cost from m suppliers to n consumers in the bipartite digraph $K_{m,n}$.

Also given are supply and consumption vectors s^i and c^j in \mathbb{Z}^k, edge capacities u_v, and volume v_i per unit commodity i.

Shmuel Onn
Multicommodity Transportation

Find integer \(k \)-commodity transportation \(x \) of minimum \(f \) cost from \(m \) suppliers to \(n \) consumers in the bipartite digraph \(K_{m,n} \).

Also given are supply and consumption vectors \(s^i \) and \(c^j \) in \(\mathbb{Z}^k \), edge capacities \(u_e \), and volume \(v_i \) per unit commodity \(i \).

For suitable \((km+k) \times km \) bimatrix \(A \) and suitable \((0+m) \times km \) bimatrix \(W \) derived from the \(v_i \) the problem becomes the \(n \)-fold integer program

\[
\min \left\{ f(W^{(n)}x) : A^{(n)}x = (s^i, c^j), \ x \geq 0, \ W^{(n)}x \leq u, \ x \in \mathbb{Z}^{nm} \right\}
\]
Multicommodity Transportation

Find integer k-commodity transportation x of minimum f cost from m suppliers to n consumers in the bipartite digraph $K_{m,n}$.

Also given are supply and consumption vectors s^i and c^j in \mathbb{Z}^k, edge capacities u_e, and volume v_i per unit commodity i.

For suitable $(km+k) \times km$ bimatrix A and suitable $(0+m) \times km$ bimatrix W derived from the v_i, the problem becomes the n-fold integer program

$$\min \{ f(W^{(n)}x) : A^{(n)}x = (s^i, c^j), \ x \geq 0, \ W^{(n)}x \leq u, \ x \in \mathbb{Z}^{nk^m} \}$$

Corollary: For fixed k commodities and m suppliers, can find optimal multicommodity transportation for n consumers in polynomial time.

Shmuel Onn
Universality
Universality of N-Fold Integer Programming

Consider the following special form of the \(n \)-fold product operator,

\[
A^{[n]} = \begin{pmatrix}
I & I & I & \cdots & I \\
A & 0 & 0 & \cdots & 0 \\
0 & A & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & A \\
\end{pmatrix}_{n}.
\]
Universality of N-Fold Integer Programming

Consider the following special form of the n-fold product operator,

\[A^{[n]} = \begin{pmatrix} I & I & I & \cdots & I \\ A & 0 & 0 & \cdots & 0 \\ 0 & A & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & A \end{pmatrix} \]

Consider such m-fold products of the 1 x 3 matrix \([1 \ 1 \ 1]\). For example,

\[[1 \ 1 \ 1]^{[3]} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix} \]
Universality of N-Fold Integer Programming

$$A^{[n]} = \begin{pmatrix}
I & I & I & \cdots & I \\
A & 0 & 0 & \cdots & 0 \\
0 & A & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & A
\end{pmatrix}$$

Universality Theorem: Any bounded set \{ y integer : By = b, y \geq 0 \} is in polynomial-time-computable coordinate-embedding-bijection with some

\[
\{ x \text{ integer} : [1 \ 1 \ 1]^{[m][n]} x = a, \ x \geq 0 \}
\]

Reference: All linear and integer programs are slim 3-way programs

(De Loera, Onn) SIAM Journal on Optimization

Shmuel Onn
Universality of N-Fold Integer Programming

\[A^{[n]} = \begin{pmatrix} I & I & I & \cdots & I \\ A & 0 & 0 & \cdots & 0 \\ 0 & A & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A \end{pmatrix} . \]

Universality Theorem: Any bounded set \(\{ y \text{ integer} : By = b, y \geq 0 \} \) is in polynomial-time-computable coordinate-embedding-bijection with some \(\{ x \text{ integer} : [1 \ 1 \ 1]^{[m][n]}x = a, \ x \geq 0 \} \)

Scheme for Nonlinear Integer Programming:

any integer program \(\max \{ f(Wx) : By = b, \ y \geq 0, \ y \text{ integer} \} \)

can be lifted to

an n-fold program: \(\max \{ f(W'x) : [1 \ 1 \ 1]^{[m][n]}x = a, \ x \geq 0, \ x \text{ integer} \} \)
Proofs
Graver Bases

The Graver basis of an integer matrix A is the finite set $G(A)$ of conformal-minimal nonzero integer vectors x satisfying $Ax = 0$.
The **Graver basis** of an integer matrix A is the finite set $G(A)$ of conformal-minimal nonzero integer vectors x satisfying $Ax = 0$.

Lemma: For fixed A, can compute in polytime the Graver basis $G(A^{(n)})$ of

$$A^{(n)} = \begin{pmatrix} A_1 & A_1 & A_1 & \cdots & A_1 \\
A_2 & 0 & 0 & \cdots & 0 \\
0 & A_2 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & A_2 \end{pmatrix}.$$
Graver Bases

The Graver basis of an integer matrix A is the finite set $G(A)$ of conformal-minimal nonzero integer vectors x satisfying $Ax = 0$.

Lemma: For fixed A, can compute in polytime the Graver basis $G(A^{(n)})$ of

$$A^{(n)} = \begin{pmatrix} A_1 & A_1 & A_1 & \cdots & A_1 \\ A_2 & 0 & 0 & \cdots & 0 \\ 0 & A_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_2 \end{pmatrix}.$$

The proof uses finiteness results of Santos-Sturmfels & Hosten-Sullivant

Shmuel Onn
Proof of Theorem 2
(convex n-fold minimization)
Proof of Theorem 2
(convex n-fold minimization)

- Set $S = \{ x \in \mathbb{Z}^{nt} : A^{(n)}x = b, \; l \leq x \leq u \}$
Proof of Theorem 2
(convex n-fold minimization)

- Set \(S = \{ x \in \mathbb{Z}^n : A^{(n)}x = b, \; l \leq x \leq u \} \)

Construct the Graver basis \(G(A^{(n)}) \)
Proof of Theorem 2
(convex n-fold minimization)

Let $S = \{ x \in \mathbb{Z}^{nt} : A^{(n)}x = b, \; l \leq x \leq u \}$

Construct the Graver basis $G(A^{(n)})$

Find initial point by auxiliary n-fold program
Proof of Theorem 2
(convex n-fold minimization)

- Set \(S = \{ x \in \mathbb{Z}^{n^t} : A^{(n)}x = b, \ l \leq x \leq u \} \)

Construct the Graver basis \(G(A^{(n)}) \)

Find initial point by auxiliary n-fold program

- Separable convex function \(f \) to be minimized
Proof of Theorem 2
(convex n-fold minimization)

- Set $S = \{ x \in \mathbb{Z}^{nt} : A^{(n)}x = b, \ l \leq x \leq u \}$

Construct the Graver basis $G(A^{(n)})$

Find initial point by auxiliary n-fold program

- Separable convex function f to be minimized

Iteratively greedily augment initial point to optimal one using elements from $G(A^{(n)})$
Proof of Theorem 2
(convex n-fold minimization)

- Set $S = \{ x \in \mathbb{Z}^{nt} : A^{(n)}x = b, \ l \leq x \leq u \}$
- Separable convex function f to be minimized
- Iteratively greedily augment initial point to optimal one using elements from $G(A^{(n)})$

Construct the Graver basis $G(A^{(n)})$

Find initial point by auxiliary n-fold program

Shmuel Onn
Proof of Theorem 2
(convex n-fold minimization)

- Set $S = \{ x \in \mathbb{Z}^{nt} : A^{(n)} x = b, \; l \leq x \leq u \}$

Constrcut the Graver basis $G(A^{(n)})$

Find initial point by auxiliary n-fold program

- Separable convex function f to be minimized

Iteratively greedily augment initial point to optimal one using elements from $G(A^{(n)})$

Integer Caratheodory Theorem assures polynomial convergence
Proof of Theorem 2
(convex n-fold minimization)

- Set \(S = \{ x \in \mathbb{Z}^{nt} : A^{(n)}x = b, \ l \leq x \leq u \} \)

Construct the Graver basis \(G(A^{(n)}) \)

Find initial point by auxiliary n-fold program

- Separable convex function \(f \) to be minimized

Iteratively greedily augment initial point to optimal one using elements from \(G(A^{(n)}) \)

Integer Caratheodory Theorem assures polynomial convergence

Theorems 1, 3 (linear optimization, minimal distance) follow from Thm. 2

Shmuel Onn
Proof of Theorem 2
(convex n-fold minimization)

- Set $S = \{ x \in \mathbb{Z}^{nt} : A^{(n)}x = b, \ l \leq x \leq u \}$

Construct the Graver basis $G(A^{(n)})$

Find initial point by auxiliary n-fold program

- Separable convex function f to be minimized

Iteratively greedily augment initial point to optimal one using elements from $G(A^{(n)})$

Integer Caratheodory Theorem assures polynomial convergence

Theorems 1, 3 (linear optimization, minimal distance) follow from Thm. 2

Theorem 4 (weighted convex minimization) reduces to unweighted Thm. 2

Shmuel Onn
Proof of Theorem 5
(convex n-fold maximization)
Proof of Theorem 5
(convex n-fold maximization)

- Set \(S = \{ x \in \mathbb{Z}^{nt} : A^{(n)}x = b, \ l \leq x \leq u \} \)
Proof of Theorem 5
(convex n-fold maximization)

Set $S = \{ x \in \mathbb{Z}^{nt} : A^{(n)}x = b, \ 1 \leq x \leq u \}$

Construct the Graver basis $G(A^{(n)})$
Proof of Theorem 5
(convex \(n\)-fold maximization)

Set \(S = \{ x \in \mathbb{Z}^{nt} : A^{(n)} x = b, \ l \leq x \leq u \} \)

Construct the Graver basis \(G(A^{(n)}) \)

Simulate linear-optimization oracle over \(S \) using Theorem 1
Proof of Theorem 5
(convex n-fold maximization)

- Set $S = \{x \in \mathbb{Z}^{nt} : A^{(n)}x = b, \; l \leq x \leq u\}$

Construct the Graver basis $G(A^{(n)})$

Simulate linear-optimization oracle over S using Theorem 1

The Graver basis covers all edge-directions of $\text{conv}(S)$
Proof of Theorem 5
(convex n-fold maximization)

- Set $S = \{ x \in \mathbb{Z}^{nt} : A^{(n)}x = b, \ l \leq x \leq u \}$

Construct the Graver basis $G(A^{(n)})$

Simulate linear-optimization oracle over S using Theorem 1

The Graver basis covers all edge-directions of conv(S)

Apply Theorem 0 on convex discrete maximization

Shmuel Onn
Epilogue:
Nonlinear Combinatorial Optimization
Nonlinear Combinatorial Optimization

\[\min/\max \{ f(Wx) : x \in S \} \]

\[S \text{ in } \{0,1\}^n \]

\[W \text{ unary } d \times n, \text{ fixed } d \]

\[f \text{ arbitrary from } \mathbb{Z}^d \text{ to } \mathbb{R} \]
Nonlinear Combinatorial Optimization

\[
\min/\max \{ f(Wx) : x \in S \}
\]

\[
\begin{align*}
S & \text{ in } \{0,1\}^n \\
W & \text{ unary } d \times n \text{, fixed } d \\
f & \text{ arbitrary from } \mathbb{Z}^d \text{ to } \mathbb{R}
\end{align*}
\]

Theorem A: For \(S \) bipartite matching in randomized polynomial time.

Shmuel Onn
Nonlinear Combinatorial Optimization

\[\min/\max \{ f(Wx) : x \in S \} \]

where \(W \) is unary \(d \times n \), fixed \(d \), \(f \) is arbitrary from \(\mathbb{Z}^d \) to \(\mathbb{R} \), and \(S \) is in \(\{0,1\}^n \).

Theorem A: For \(S \) bipartite matching in randomized polynomial time.

Berstein, Onn, Discrete Optimization

Shmuel Onn
Nonlinear Combinatorial Optimization

\[
\min/\max \{ f(Wx) : x \in S \}
\]

\[
\begin{align*}
S & \text{ in } \{0,1\}^n \\
W & \text{ unary } d \times n, \text{ fixed } d \\
f & \text{ arbitrary from } \mathbb{Z}^d \text{ to } \mathbb{R}
\end{align*}
\]

Theorem A: For \(S \) bipartite matching in randomized polynomial time.

Berstein, Onn, Discrete Optimization
Nonlinear Combinatorial Optimization

\[\min/\max \{ f(Wx) : x \in S \} \]

\[S \text{ in } \{0,1\}^n \]
\[W \text{ unary } d \times n, \text{ fixed } d \]
\[f \text{ arbitrary from } \mathbb{Z}^d \text{ to } \mathbb{R} \]

Theorem A: For \(S \) bipartite matching in randomized polynomial time.

Berstein, Onn, Discrete Optimization

Theorem B: For \(S \) matroid (e.g. spanning tree) in polynomial time.

Nonlinear Combinatorial Optimization

\[\min/\max \{ f(Wx) : x \in S \} \]

\(S \) in \(\{0,1\}^n \)

\(W \) unary \(d \times n \), fixed \(d \)

\(f \) arbitrary from \(Z^d \) to \(R \)

Theorem A: For \(S \) bipartite matching in randomized polynomial time.

Berstein, Onn, Discrete Optimization

Theorem B: For \(S \) matroid (e.g. spanning tree) in polynomial time.

Theorem C: For \(S \) matroid intersection in randomized polynomial time.

Berstein, Lee, Onn, Weismantel, Mathematical Programming?
Independence Systems

$$\min/\max \{ f(wx) : x \in S \}$$

- S in $\{0,1\}^n$ independence system given by linear optimization oracle
- w in $\{a_1, \ldots, a_p\}^n$ (d=1)
- f arbitrary from \mathbb{Z} to \mathbb{R}

Theorem D: Can find an $r(a_1, \ldots, a_p)$-best solution in polynomial time.

For $p=2$ weight values $r(a_1, a_2) = F(a_1, a_2)$ is the Frobenius number.

So for w in $\{2,3\}^n$ can efficiently find a 1-best solution.

Amazingly, this is best possible:

Theorem E: For w in $\{2,3\}^n$ finding 0-best solution takes exponential time.

Lee, Onn, Weismantel, SIAM Journal on Discrete Mathematics
Bibliography (mostly available at http://ie.technion.ac.il/~onn)

Onn: Convex Discrete Optimization (SMS Lecture Notes, CRM Montréal)
Onn: Nonlinear Discrete Optimization (Nachdiplom Lectures, ETH Zurich)

- Partition problems with convex objectives (Math. OR)
- Convex matroid optimization (SIAM Disc. Math.)
- The complexity of 3-way tables (SIAM Comp.)
- Convex combinatorial optimization (Disc. Comp. Geom.)
- Markov bases of 3-way tables (J. Symb. Comp.)
- All linear and integer programs are slim 3-way programs (SIAM Opt.)
- Entry Uniqueness in margined tables (Lect. Notes Comp. Sci.)
- Graver complexity of integer programming (Annals Combin.)
- Nonlinear bipartite matching (Disc. Opt.)
- N-fold integer programming (Disc. Opt. in memory of Dantzig)
- Convex integer maximization via Graver bases (J. Pure App. Algebra)
- Polynomial oracle-time convex integer minimization (Math. Prog.)
- Nonlinear matroid optimization and experimental design (SIAM Disc. Math.)
- Nonlinear optimization for matroid intersection and extensions (Math. Prog. ?)
- Nonlinear optimization over a weighted independence system (SIAM Disc. Math. ?)

Shmuel Onn
Comprehensive up-to-date development of the general theory is available in my

Nachdiplom Lectures
on
Nonlinear Discrete Optimization

ETH Zurich, Spring 2009

http://www.fim.math.ethz.ch/activities/eth_lectures