A Subexponential Randomized Simplex Algorithm
Gil Kalai (extended abstract)

Shimrit Shtern

Presentation for
Polynomial time algorithms for linear programming
097328

Technion - Israel Institute of Technology

May 14, 2012
1 LP and Simplex

2 Polyhedron Diameter Problem
 - Formulation
 - Kalai’s Theorem

3 Kalai’s Algorithms
 - Algorithm S_2
 - Algorithm S_0

4 Summary
Linear Programming

Maximizing a linear function of d variables and n constraints over a the feasible polyhedron.

$$\max \{c^T x : Ax \leq b\}$$

The dual

Minimizing a linear function of n variables and d constraints.

$$\min \{b^T y : A^T y = c, y \geq 0\}$$
Linear programming properties

- The maximum (if exists) is achieved in one of the vertices.
- \(P = \{ x \in \mathbb{R}^d : Ax \leq b \} \) the feasible polyhedron
- \(G(P) \) is the a graph which connects vertices in \(P \) if they form the end points of a 1-dimensional face of \(P \).
(a) Polygon - P

(b) Graph - $G(P)$
The Simplex Algorithm

- Introduction of the simplex [Dantzig, 1950]
- In each step we move from one feasible vertex v to an adjacent vertex w which has a higher objective function value.
- The choice of w is called the pivot rule.
- The simplex algorithm is a class of algorithms depending on the specific pivot rules.
- Number of pivot steps to the top.
- Common pivot rules proves to be exponential in worst case [Klee & Minty, 1971]
- Deterministic vs. Randomized pivot rules
A *Strong* algorithm - the number of arithmetic operations depends only on d and n (does not depend on L).

The ellipsoid method and interior point method are polynomial but not strong.

The existence of a strong polynomial algorithm for LP is still open (found for specific types of LP).

Strong algorithms for LP which are linear for fixed dimensions: $O(2^d n)$ [Megiddo, 1984], $O(3^{d^2} n)$ [Dyer, 1986], [Clarkson, 1986], $O(d!n)$ [Seidel, 1990]

Clarkson (1988) - randomized algorithm, solves $O(d^2 \log n)$ smaller linear programs with $O(d^2)$ constraints and d variables with expected $O(d \log \log n + d^d) + O(d^2 n)$ operations.
A strong sub-exponential algorithm for LP

The Algorithm [Gil Kalai, 1992]

Randomized pivot rule with sub-exponential expected number of pivot steps

Used as a subroutine in Clarkson’s Algorithm, we get a randomized dual-simplex algorithm which requires an expected $d^{O\left(\sqrt{\frac{d}{\log d}} + \log \log n\right)} + O(d^2 n)$ arithmetic operations.
Polyhedron Diameter Problem

- The longest shortest path between two vertices in a graph.
- Given an objective function, the longest shortest monotone path from a vertex to the top of the graph.
- An algorithm which finds a path from a vertex to the top of the graph.
Definitions

- $L(d, n)$ - class of LPs, d variables, n constraints.
- $O \in L(d, n)$ with objective function ϕ.
- P - the feasible polyhedron of O.
- $G(P)$ - the feasible polyhedron graph.
- Given $G(P) = (V, E)$, ϕ we define $\tilde{G}(O) = (V, \tilde{E})$ - the problem graph:

 $$(v, w) \in \tilde{E} \iff \{v, w\} \in E, \phi(w) > \phi(v)$$

- Extension:
 If ϕ is not bounded on P we add vertex $v = \infty$:
 $\phi(v) = \infty$ and (w, v) exists if there is a 1-dimensional face containing w on which ϕ is not bounded above.
Definitions (cont.)

- $\delta(G(P))$ - *diameter* of the graph $G(P)$.
- **Optimal set** -
 \[W = \{ w \in V : \phi(w) \geq \phi(v) \quad \forall v \in V \} \]
- $h(v)$ - the minimal length of a directed path from vertex v to some $w \in W$.
- $\delta(\tilde{G}(O))$ - *height* of $\tilde{G}(O)$
 \[\delta(\tilde{G}(O)) = \max_{v \in V} h(v) \]
Diameter and Height Bounds

- Diameter and Height of a polyhedra set:

\[\Delta(d, n) = \max_{O \in L(d, n)} \delta(G(P)) \]
\[H(d, n) = \max_{O \in L(d, n)} \delta(\tilde{G}(O)) \]

- \(\Delta(d, n) \leq H(d, n) \)

- Hirsch conjecture: \(\Delta(d, n) \leq n - d \) proven false for unbounded polyhedra [Klee & Walkup, 1967]

- The best lower bound known: \(\Delta(d, n) \geq n - d + \left\lfloor \frac{d}{5} \right\rfloor \)

- Upper bound:
 - Exponential: \(\Delta(d, n) \leq n^{2d-3} \) [Larman, 1970].
 - Quasi polynomial: \(\Delta(d, n) \leq n^{2\log d + 3} \) [Gil Kalai, 1992], \(n^{\log d + 1} \) [Kalai & Kleitman, 1992]
Properties

The objective

Finding a sub-exponential bound for for $H(d, n)$

$H(d, n)$ - minimal # of pivot steps when each step can have unlimited computational power.
More definitions

- \mathcal{F} - facets of P ($d - 1$ dimensional faces)
- $U(w) \subset \mathcal{F}$ the active facets of P with respect to w -
 \[U(w) = \{ F \in \mathcal{F} : \max \{ \phi(x) : x \in F \} > \phi(w) \} \]
- $u(w) = |U(w)|$
- $\bar{H}(d, n) = \max_{O \in L(d, \cdot)} \max_{v \in V : u(v) \leq n} h(v)$
- $H(d, n) \leq \bar{H}(d, n)$
A sub-exponential bound

Theorem

\[\bar{H}(d, n) \leq n \left(\frac{d + \log n}{\log n} \right) \leq n^{\log d + 1} \]

We obtain this bound by finding a recursive formula for \(\bar{H}(d, n) \).
A sub-exponential bound

Proof outline

- We can reach $n - k + 1$ active facets in at most $\bar{H}(d, n - k)$
- There exist an optimal vertex w in one of those facets $u(w) \leq k - 1$
- We obtain the maximal vertex in that facet in $\bar{H}(d - 1, n - 1)$ steps.
- We continue from w with at most $\bar{H}(d, k - 1)$ steps.

\[
\bar{H}(d, n) \leq \bar{H}(d, n - k) + \bar{H}(d - 1, n - 1) + \bar{H}(d, k - 1)
\]
A sub-exponential bound - Proof

- \(O \in L(d, \cdot), \tilde{G}(O) = (V, \tilde{E}), \ v \in V \) such that \(u(v) \leq n \)
- Let \(S \subset U(v) \) and \(|S| = k \)
- \(B \) is the upper bound on the shortest monotone path from \(v \) to either a vertex in \(S \) or the top of \(P \).
case 1: \(\exists F \in S : v \in F \) then \(B = 0 \)

case 2: \(\forall F \in S : v \notin F \)

- Let \(O' \) the problem where \(F' = U(v) \cup \{F : v \in F\} \setminus S \) and \(P' \) the feasible polyhedron.
- \(v \) is a vertex in the new problem.
- In \(P' \) we have \(u(v) \leq n - k \Rightarrow h(v) \leq \bar{H}(d, n - k) \)
• conclusion: $B \leq \bar{H}(d, n - k)$. why?
 • If the path which defines $h(v)$ is in P we have the latter inequality.
 • Otherwise, $\exists (x, y)$ in the path such that $x \in P$ and $y \notin P \Rightarrow \exists z \in S$ which is on the edge between x and y
Since this is true for every subgroup of size \(k \) we can reach at least \(n - k + 1 \) facets in \(\bar{H}(d, n - k) \) steps.

On a certain facet it takes \(\bar{H}(d - 1, n - 1) \) steps to get to the maximal vertex in that facet.

The top vertex among those \(n - k + 1 \) facets \(w \) satisfies \(u(w) \leq k - 1 \)

We then get the recursive formula:

\[
\bar{H}(d, n) \leq \bar{H}(d - 1, n - 1) + \bar{H}(d, n - k) + \bar{H}(d, k - 1)
\]
The recursive formula for $\bar{H}(d, n)$:

$$\bar{H}(d, n) \leq \bar{H}(d - 1, n - 1) + \bar{H}(d, n - k) + \bar{H}(d, k - 1)$$

Setting $k = \lceil \frac{n}{2} \rceil$ and defining $f(d, t) = 2^t \bar{H}(d, 2^t)$ we get:

$$f(d, t) \leq f(d - 1, t) + f(d, t - 1) \quad \Rightarrow$$
$$f(d, t) \leq \binom{d + t}{t} \quad \Rightarrow$$
$$\bar{H}(d, n) \leq n \binom{d + \log n}{\log n}$$
Some remarks

- Bound on $\Delta(d, n)$ suggests every (primal) simplex algorithm needs at least a linear in n number of pivot steps.
- The upper bound is slightly super linear in n (for fixed d). **Is there a linear bound?**
Kalai’s Algorithms

- Kalai presents three algorithms which are produced by 3 randomized pivot rules. (We will present two of them).
- The analysis of these algorithms is done by recursion.
- All the algorithms yield a sub-exponential expected number of pivot steps.
- Each pivot step takes at most $O(d^2 n)$ and generates at most 1 random variable.
Assumptions and General Step

- P is a simple polyhedron, i.e. each vertex is the intersection of exactly d facets.
- We start from a feasible vertex v.
- We can "find" vertices on r active facets

 1. Start from $z := v$, $k := |S| = d$
 2. Solve an LP with group S known constraints (facets) recursively and obtain a solution z
 3. If z is in P then z is optimal.
 4. If z is not in P find the first edge E on the path which leaves the P. The last point on E in P is the intersection with facet $F \notin S$.
 5. $z := E \cap F$, $S := S \cup F$, $k := k + 1$
 6. If we have r facets, stop; otherwise go to step 2
Algorithm S_2

- Start from some vertex v:
 1. Find vertices in r active facets - F_1, F_2, \ldots, F_r
 2. Pick at random a facet from the r facets you reached.
 3. Find w the optimal vertex on that facet.
 4. Go back to step 1 beginning from w

- If we’re going back to previously visited vertices why is this a simplex algorithm?

- What is $u(w)$?
Algorithm S_2 - Analysis

- Let $f_2(d, n)$ be the maximal expected number of pivot steps needed using algorithm S_2 for any problem in $L(d, n)$.
- The recursive formula for $f_2(d, n)$ implied from this algorithm is:

$$f_2(d, n) \leq \sum_{i=d}^{r} f_2(d, i) + f_2(d-1, n-1) + \frac{1}{r} \sum_{i=1}^{r} f_2(d, n-i)$$

- Choosing $r = \max\{d, \frac{n}{2}\}$ we get

$$f_2(d, n) \leq \sum_{i=d}^{\frac{n}{2}} f_2(d, i) + f_2(d-1, n-1) + \frac{2}{n} \sum_{i=1}^{\frac{n}{2}} f_2(d, n-i)$$
Algorithm S_2 - Analysis

Bounds

\[f_2(d, n) \leq n^O(\sqrt{\frac{d}{\log d}}) \]
\[f_2(d, Kd) \leq 2^O(\sqrt{dK}) \]
\[f_2(d, d+m) \leq 2^O(\sqrt{m \log d}) \]
Algorithm S_0

- Start from some vertex v:
 1. Pick at random a facet containing the current vertex.
 2. Find w the optimal vertex on that facet.
 3. Go back to step 1 beginning from w.

- What is $u(w)$?
Algorithm S_0 - Analysis

- Let $f_0(d, n)$ be the maximal expected number of pivot steps needed using algorithm S_0 for any problem in $L(d, n)$.
- The recursive formula for $f_0(d, n)$ implied from this algorithm is:

$$f_0(d, n) \leq f_0(d - 1, n - 1) + \frac{1}{d} \sum_{i=0}^{d-1} f_0(d, n - i)$$
Algorithm S_0 - Analysis

Bounds

\[f_0(d, d + m) \leq 2^{O(\sqrt{m \log d})} \]

which is generally worse than the f_2 bound (specifically for $n = O(d^2)$)

The algorithm is a dual simplex algorithm, a variation of the dual form of S_0.

The number of expected operation given this algorithm [J. Matoušk, Sharir and Welzl, 1992]:

$$\min\{O(d^22^d n), e^{2\sqrt{d\ln(n/\sqrt{d})}}+O(\sqrt{d}+\ln n)\}$$
Conclusions

- Using oracle instead of randomization algorithm S_2 becomes quasi-polynomial (bound on $H(d, n)$).
- Using Kalai’s algorithm as a subroutine in Clarksons algorithm we get an algorithm with expected arithmetic operations: $d^{O\left(\sqrt{d/\log d}+\log \log n\right)} + O(d^2n)$.

Example:
- $d = 1,000,000$
- $n = 2d$ (implying $2^{O(\sqrt{d})}$ pivot steps)
- $10^{400,000}$ vertices.
- $10^{3,000}$ expected pivot steps using S_2.
- $H(d, n) \leq 10^{50}$
Open questions

- Is there a strong polynomial algorithm for linear programming?
- Decide if $\Delta(d, n)$ and $H(d, n)$ are polynomial.
- Decide if $H(d, n)$ is linear in n for a fixed dimension d.
- Deterministic sub-exponential pivot rules.
- Better randomized pivot rules.
- Give a randomized (primal) pivot rule for which for a fixed dimension the complexity is at most $O(n^C)$.
Questions?
Tries to finds a subset of constraints S which contain optimal basis B.

How?

1. $S = \emptyset$
2. Choose some R set of m constraints $m > d$.
3. Use standard simplex algorithm to compute optimum over $R \cup S$ returns vertex v.
4. Computes Z, the set of violated constraints. If Z is empty than v is optimal.
5. Update $S = S \cup Z$ and return to step 2.

At most d iterations to obtain a solution.

determine m such that Z is not too large.
Clarkson’s Algorithm

- In Clarkson’s algorithm, R is random and of size $d\sqrt{n}$
- Insures an expected \sqrt{n} constraints violated at each iteration.
- If there are less than $9d^2$ constraints, the optimum is found using a simple algorithm as a base subroutine.
- At most $O(d^2 \log n)$ calls to the base subroutine.
Why is S_2 a simplex?

Let's look at the randomization in a slightly different way:

- Order the facets we encounter by the order we encounter them, e.g. F_1 is the first facet we encounter and F_r the last.

- Generate, in advance, a random number s between 1 and r.

- Proceed in the algorithm until you reached the F_s then stop.

This way we do not go back to a vertex we already visited.
What is the degree of w?

Again lets look at the randomization in a slightly different way:

- Order the facets we encounter by their maximal vertex value:

$$i > j \Rightarrow \max\{\phi(v) : v \in F(i)\} \geq \max\{\phi(v) : v \in F(j)\}$$

- In other words if we denote $v(i)$ the optimal vertex of facet $F(i)$ we have that $u(v(i)) \leq n - i$.

- Starting from vertex v for which $u(v) \leq n$ with probability $\frac{1}{r}$ we reach a vertex w for which:

$$u(w) \leq n - i \quad \forall i = 1, \ldots, r$$
What is the degree of w in S_0?

- Notice that any vertex v has at most 1 inactive facet (only if the objective function is parallel to that facet).
- Assuming that all facets containing v are active with probabilities of $\frac{1}{d}$ we have:
 \[u(w) \leq n - i \quad \forall i = 1, \ldots, d \]
- Assuming that v has one inactive facet then with probability $\frac{1}{d}$ $w = v$ and with probabilities of $\frac{1}{d}$ we have:
 \[u(w) \leq n - i \quad \forall i = 1, \ldots, d - 1 \]
- The latter case is of course worse.