Data-Parallel Computing Meets STRIPS: Extended Technical Report

Erez Karpas and Tomer Sagi and Carmel Domshlak and Avigdor Gal and Avi Mendelson
{karpase@tx, stomers7@tx, dcarmel@ie, avigal@ie, avi.mendelson@tce}.technion.ac.il
Technion — Israel Institute of Technology
Technion City
Haifa 32000, Israel

Moshe Tennenholtz
moshet@microsoft.com
Microsoft Research & Technion
Microsoft — Herzliya R&D Center
13 Shenkar St.
Gav-Yam, Building No. 5
Herzliya 46275, Israel *

Abstract

The increased demand for distributed computations on big data has led to solutions such as SCOPE, DryadLINQ, Pig, and Hive, which allow the user to specify queries in an SQL-like language, enriched with sets of user-defined operators. The lack of exact semantics for user-defined operators interferes with the query optimization process, thus putting the burden of suggesting, at least partial, query plans on the user. In an attempt to ease this burden, we propose a formal model that allows for data-parallel program synthesis (DPPS) in a semantically well-defined manner. We show that this model generalizes existing frameworks for data-parallel computation, while providing the flexibility of query plan generation that is currently absent from these frameworks. In particular, we show how existing, off-the-shelf, AI planning tools can be used for solving DPPS tasks.

Motivation

In the classical approach to data processing, the user of a database management system (DBMS) specifies her data processing goal as a declarative query, and the DBMS automatically generates a query plan, i.e., a data processing program that computes the desired goal (Ullman 1988). The final query plan is typically constructed by first generating some query plan, and then optimizing it locally by applying a set of predefined query-plan rewriting rules (see e.g., Ambite and Knoblock 2001). This high-level workflow is based on the implicit assumption that query plans consist mostly of built-in operators (for example, relational algebra operators). This assumption is needed because the system cannot proactively select user-defined operators for performing intermediate computations, and query plans cannot be optimized around these user-defined operators.

With the rapid growth of both public and enterprise data repositories, the area of data processing faces conceptual changes in the way the data is perceived, analyzed, and stored. Classical DBMSs and their various extensions are still a cornerstone of data processing, yet large scale and operator-rich computations involving huge amounts of data are becoming more and more common. This, along with the physical limitations on the computing power and storage that a single machine can provide, has led to an increased interest in computation on highly distributed computing infrastructure, often referred to as “data-parallel computing”. While parallel and distributed database systems (Valduriez 1993; Ozu and Valduriez 2007) can address the scalability issues, they, like traditional DBMSs, lack flexibility in exploiting general user-defined operators.

To address this need, several systems for data-parallel computing have been developed; the most well-known of these are probably Map/Reduce (Dean and Ghemawat 2008) and its open-source implementation Hadoop, and Dryad (Isard et al. 2007). These systems are based on low-level query plan programming, which is both error-prone and inhibits mass adoption. However, they allowed for development of higher-level systems, such as SCOPE (Chaiken et al. 2008), DryadLINQ (Isard and Yu 2009), Pig (Olston et al. 2008b), and Hive (Thusoo et al. 2009; 2010), which support combining programming with queries in SQL-like languages. The high-level design of these systems is driven by two primary requirements: operability with arbitrary rich sets of user-defined operators for performing intermediate steps of query plans, and optimization of query plans that takes into account the distributed nature of the underlying computing/storage infrastructure.

Unfortunately, supporting unconstrained usage of user-defined operators comes at the expense of moving away from the declarative approach to data processing. First, if the user formulates a query which departs from the built-in operators, then she must provide the system with a base query plan. Second, to allow for further optimizations of the query plan, the user must explicitly instruct the system on what kind of optimizations can be performed around the non-standard operators.

Both these requirements take the user away from the goal-
driven, declarative data processing paradigm, and currently there is no agreement on what is the right balance between expressivity of the system and the burden to be put on the user: Some systems restrict user-defined operators to be of certain allowed types (Cohen 2006; Chaiken et al. 2008; Thusoo et al. 2010), and others do not optimize user-specified query plans (Olston et al. 2008b). The reason that general user-defined operators pose such a challenge is that the system is uncertain about “what they need” and/or “what their effects are”. While the semantics of the built-in operators is “hard-coded” in the design of the data-parallel computing systems, user-defined operators typically come with no semantics attached to them. Although some systems attempt to perform automated analysis of the user’s code (Izard and Yu 2009; Cafarella and Ré 2010), these analyses are (and must be) limited, and can not be used to “reverse engineer” the semantics of a given user-defined function.

For example, say an analyst wants two histograms of the users of a large social network, one by age and one by relationship status. The optimal query plan for that request will consist of a single table scan and two counts, but allowing the system to come up with such a plan is tricky. In an SQL-style query language, this request will have to be formulated as two queries, both expressed as aggregations over the users table, and planning for these queries in separation will result in a sub-optimal plan with two scans of the same table. However, suppose that somebody already implemented a “double aggregation” operator, which performs two aggregations over the same table, while only scanning it once. Although that operator can, in principle, be used for devising an optimal query plan, the system does not know what this operator can be used for and how, since this operator is user-defined. Hence, our analyst either settles for a sub-optimal query plan, or, if she is somehow aware of this “double aggregation” operator, then she can provide the system with a base query plan that uses this operator. While this is a simplistic example, it is meant for illustration purposes only; more complex example, e.g. planning for image analysis (Chien et al. 1999), can also can be formulated in terms of our proposed model.

The dilemma above is not new, and it shows up each time a declarative interface to data processing is challenged by the need to expand the expressivity of the system. In particular, the interplay between the usage complexity of the operator description languages, their expressivity, and the computational complexity of automatically composing the operators to achieve a declaratively specified goal is precisely the focus of AI planning research. The question that initiated our investigation was precisely that: What level of expressivity is expected these days from the realm of data-parallel computing, and how/whether AI planning technology can be leveraged to achieve this expressivity while reviving declarative data processing.

To study this question, we suggest a formal model of data-parallel program synthesis, DPPS, that generalizes the specific systems developed in the area. The expressivity of DPPS goes beyond the expressivity of relational algebra extended with aggregate functions, allowing for both taking into account the distributed nature of data-parallel computation, as well as incorporating arbitrary user-defined operators of the form supported by the current data-parallel computing systems. While this level of expressivity unavoidably makes program synthesis and optimization in DPPS computationally hard in the worst case, the syntax and semantics of the DPPS model bear close similarity to the standard action scheme models adopted in the field of AI planning. Exploiting that, we show how DPPS tasks can be compiled into STRIPS planning tasks, and thus solved by off-the-shelf AI planning tools, even if not all possible artifacts of the DPPS operators known to the system can be enumerated in polynomial time.

Model

Our formalism of data-parallel program synthesis is tailored to tracking computation-specific data chunks. Each such data chunk represents some information which can be either generated or required as input by a computation primitive. For example, a data chunk can represent all records of males between the ages of 18–49, or the average salary of all males between the ages of 18–49, etc. Note that the actual value of the average salary, does not need to be known in advance; the fact that it is possible to compute this average given the input records suffices.

Formally, a data-parallel program synthesis (DPPS) task consists of:

- D — a set of possible data chunks. Each data chunk d is associated with the amount $σ_d$ of memory it requires (given, for example, in MB). D may be given explicitly or described implicitly, in which case it could even be infinite.
- N — a finite set of computing units, or processors. Each processor n is associated with the maximum total size $κ_n$ of the data chunks it can hold and access efficiently.
- A — a set of possible computation primitives. Each such primitive is a triplet $a := (I, O, C)$, where $I ⊆ D$ is the required input, $O ⊆ D$ is the produced output, and $C : N → \mathbb{R}^{0+}$ is a function describing the cost of the computation on each processor. Similarly to the possible data chunks, the set of computation primitives can also be given explicitly or implicitly, and in the latter case, the set A could be infinite.
- $T : N \times D \times N → \mathbb{R}^{0+}$ — the data transmission cost function. $T(n_1,d,n_2)$ is the cost of transmitting data chunk d from processor n_1 to processor n_2.
- s_0 — the initial state of the computation.
- G — the goal of the computation.

A state of the computation describes which chunks of data each processor currently holds. Formally, a state $s : N \rightarrow 2^{D}$ maps each processor to the set of data chunks it holds. For the sake of convenience, we define the free memory capacity of processor n at state s by $f(n,s) := κ_n − \sum_{d \in s(n)} σ_d$. The goal is also a function $G : N → 2^{D}$ that maps processors to data chunk sets, describing which chunks of data should be stored at each processor at the end of the computation. A state s satisfies the goal G iff each
We now turn to consider the expressivity and computational complexity of DPPS. Despite the fact that the syntax of DPPS seems very different from SQL-style database query languages, we begin by showing that DPPS is strictly more expressive than relational algebra (Codd 1970) extended with aggregate functions (Klug 1982). Although there is a shift in data-parallel computing systems towards the NoSQL paradigm (Padhy, Patra, and Satapathy 2011), relational algebra is still a popular formalism for describing queries. Furthermore, modern data-parallel processing systems can impose an “ad-hoc” schema on non-relational data, thus making relational algebra still relevant to these systems. It is also worth noting at this point that DPPS is not limited to relational algebra, and can be used with other data models, that may be more suited to the NoSQL paradigm.

Presenting a complete description of relational algebra here is infeasible, but we will brieﬂy mention that a relational algebra query can be represented as a tree, whose leaves are either constants or relations (i.e., database tables), and whose inner nodes are projection (π), selection (σ), or aggregation (A) of a single child node, or cross product (×), set union (∪) or set diﬀerence (∖) of two child nodes. Similarly to the alias mechanism of SQL, we assume vlog that each occurrence of a relation name in that tree is assigned a distinct name.

Theorem 1 Given an extended relational algebra query Φ, we can eﬃciently construct a solvable DPPS task II such that any solution π for II induces a valid query plan ϕ for Φ.

Proof: we construct a DPPS task II with a single processor n. The possible data chunks D of II are all subexpressions of Φ, and they are constructed from the tree representation of Φ by taking, for each node e in Φ, the subtree rooted at e, that is, D := \{subtree(e) | e ∈ Φ\}. As the data chunks are represented in Φ explicitly, their number is linear in the size of Φ.

The computation primitives A of II correspond to the internal nodes of Φ; for each internal node e we construct a primitive αe, whose inputs are the children of e and whose output is e, with a cost that reﬂects the (typically estimated) execution cost of the computation. In the initial state of Π, the single processor n contains the data chunks corresponding to all leaf nodes, and the goal is for n to hold the data chunk corresponding to Φ. Since there is only one processor in II, the transmission cost function T is irrelevant. It is easy to see that all solutions to Π contain the same computations, one for each internal node in Φ (the only choice the solver makes is the order in which these computations are performed), and all these solutions of Π correspond to query plans for Φ.

This proof of Theorem 1 is simple, but its construction restricts the scope of feasible query plans. However, there is a simple fix for that, which we describe here in informal terms. First, we add computation primitives corresponding to relational algebra equivalence rules, with a cost of 0. For example, the equivalence rule σp(σq(X)) = σq(σp(X)) induces the computation which takes as input a data chunk of the form σp(σq(X)), and produces as output the data chunk σq(σp(X)). Of course, this means we must extend the set of possible data chunks D to include all possible expressions derived in this manner. However, as noted earlier, we do not have to explicitly enumerate all possible data chunks, but can deﬁne them implicitly, by the base relations and the relational algebra operators. Additionally, we can add operators corresponding to “macros”, when these computations can be more eﬃciently executed. For example, joins can be expressed as selection over a cross-product of two relations, but are usually much more eﬃcient to execute than ﬁrst performing a cross-product, and then a selection over its output. These allow the solver to ﬁnd a more eﬃcient plan, while using the equivalence computations to prove that the result is equivalent to the original query.

In essence, this formalizes an encoding of (non-distributed) query optimization as a DPPS task. However, our main motivation comes from the need to perform distributed computations. While the basic ideas described above still work, there are several more issues that need to be dealt with.

First, a typical distributed database will fragment tables, and thus processors will no longer contain only base relations (and constants) in the initial state, but will usually contain some table fragments, which can be expressed as selection and/or projection of the base relations. For example, assuming we have two processors which store some table T by hash-partitioning on ﬁeld f, in the initial state
We will now show that II is solvable iff Φ is satisfiable. Assume Φ is satisfiable, and let τ be some satisfying assignment of Φ. Then we can construct a solution for II by generating the appropriate data chunk for each variable v (either v_T or v_F), sending this data chunk to each of the clauses c appears in, and then satisfying these clauses using the appropriate $comp_{c,\tau}$ computation.

In the other direction, assume II has a solution π. The only way to generate the data chunk sat_c for any clause c is to have v_T or v_F for each of the variables in c. The only way to generate v_T precludes ever generating v_F, and vice versa. Thus, we can define an assignment τ by

$$\tau(v) = \begin{cases} T & v_T \text{ was generated in } \pi \\ F & \text{otherwise} \end{cases}$$

sat_c was generated for all clauses in Φ, therefore the data chunks that were generated in π must satisfy c, and therefore τ is a satisfying assignment for Φ.

The following two theorems show that optimal data-parallel program synthesis is NP-hard even under severe restrictions.

Theorem 2 Satisficing data-parallel program synthesis is NP-hard, even when the possible data chunks are given explicitly.

Proof: The proof is by polynomial reduction from 3-SAT (Karp 1972). Given a CNF formula Φ, with each clause containing at most 3 literals, we construct a DPPS task II, such that II is solvable iff Φ is satisfiable.

For each variable v of Φ we create a node, also denoted by v, with capacity 2. We also create 4 data chunks for each variable v: v_T, v_F, v_T^\perp, and v_F^\perp. We create two computations for each variable: $comp_{v,\tau}$ which requires input v_T and generates output v_T, and $comp_{v,F}$ which requires input v_F and generates output v_F. In the initial state, v contains v_T and v_F. These computations have a cost of 1 on node v, and a cost of ∞ on all other nodes.

For each clause c of Φ we create a node, denoted by c, with capacity 4. We also create an additional data chunk for each clause c: sat_c denoting that clause c has been satisfied. Additionally, for any assignment τ to the variables in c that satisfies c, we define a computation $comp_{c,\tau}$. $comp_{c,\tau}$ requires as input the values of τ, that is v_F if $\tau(v) = F$ and v_T if $\tau(v) = T$, and generates as output sat_c. Note that since Φ is a 3-SAT formula, the number of possible $comp_{c,\tau}$ computations for each clause c is at most 8, and each such computation requires at most 3 inputs. The goal of the DPPS task is to have sat_c at each clause node c.

Note that the only way to generate the data chunk v_T (respectively, v_F) is to delete v_F^\perp (respectively, v_T^\perp) from v, and use the computation $comp_{v,\tau}$ (respectively, $comp_{v,F}$). Deleting v_F^\perp (respectively, v_T^\perp) is required to make room for the output that will be generated.
Theorem 4 Optimal data-parallel program synthesis with a single data chunk is NP-hard.

Proof: The proof is by polynomial reduction from the minimum Steiner tree in a graph problem (Karp 1972; Garey and Johnson 1979). Given a graph \((V, E) \) with edge weights \(w : E \rightarrow \mathbb{N}^+ \), and a set \(R \subseteq V \), we construct a DPPS task with a single data chunk \(d \). The nodes of the DPPS task are \(V \), the nodes of the graph, and the transmission cost function \(T \) is defined by \(w \), with missing edges assigned a cost of \(\infty \).

Formally, \(T(n_1, d, n_2) := \begin{cases} w(n_1, n_2) & (n_1, n_2) \in E \\ \infty & (n_1, n_2) \notin E \end{cases} \).

Let \(n \in R \) be an arbitrary node from \(R \). In the initial state of the DPPS task, \(n \) holds \(d \), and the the rest of the nodes hold no data. The goal is for all nodes in \(R \) to hold \(d \).

As there are no computations to be performed, the only actions needed in the solution are transmission actions. We now show that the edges upon which a transmission occurred in an optimal solution for this DPPS task are a minimum Steiner tree. Denote these edges by \(E' \), and the vertices incident upon them by \(V' \).

We will first show that \(E' \) is indeed a tree. Assume that \(E' \) contains some cycle. Then there is an optimal solution for the DPPS task which transmits \(d \) to some node which already stores \(d \) (or some node deleted \(d \)). Either case implies that the solution is non-optimal — a contradiction.

Therefore \(E' \) is a tree. It is easy to see that \(R \subseteq V' \), as otherwise the goal would not have been achieved, and therefore \(E' \) is a Steiner tree. We now show that it is indeed a minimum Steiner tree. Assume that there exists another Steiner tree, \(E'' \), which is cheaper than \(E' \). Then we can construct a solution for the DPPS task with the same cost as \(E'' \) by traversing the edges in \(E'' \), contradicting the optimality of the solution which generated \(E' \).

These proofs capture two sources of complexity of DPPS: The complexity in Theorem 3 stems from the number of possible data chunks, while Theorem 4 captures the complexity which stems from the network structure.

Although both optimal and satisficing DPPS are worst-case intractable in many cases, that does not mean that none of their practically relevant fragments is polynomial time. While much further investigation is needed here, Theorem 5 already captures one such fragment of tractability, which in particular contains our multiple histogram running example.

Theorem 5 Satisficing data-parallel program synthesis with no memory constraints can be solved in polynomial time, when the possible data chunks are given explicitly.

The proof is by polynomial reduction to satisficing delete-free STRIPS planning, which is known to be polynomial-time solvable (Bylander 1994). Exact details of the construction are given in the next section.

DPPS meets STRIPS

The worst case hardness of data-parallel program synthesis is clearly not something to be ignored, but obviously it does not imply that solving practical problems of interest is out of reach. The two options here would be either to develop a special-purpose solver for DPPS, or to compile DPPS tasks into a canonical combinatorial search problem, and use an off-the-shelf solver for the latter. The key advantage of the second option, which we consider here, is that using off-the-shelf solvers only requires modeling the problem of interest in the right formalism, without programming. Furthermore, these solvers tend to be better engineered and more robust than special-purpose solvers for niche problems. Since DPPS is all about synthesizing (possibly partially ordered) goal-achieving sequences of actions, a natural such target of compilation for DPPS would be this or another standard formalism for deterministic planning, with STRIPS probably being the most canonical such formalism (Fikes and Nilsson 1971).

A STRIPS planning task with action costs is a 5-tuple \(\Pi = (P, O, C, s_0, G) \), where \(P \) is a set of propositions, \(O \) is a set of actions, each of which is a triple \(o = (\text{pre}(o), \text{add}(o), \text{del}(o)) \), \(C : O \rightarrow \mathbb{R}^{\geq 0} \) is the action cost function, \(s_0 \subseteq P \) is the initial state, and \(G \subseteq P \) is the goal. An action \(o \) is applicable in state \(s \) if \(\text{pre}(o) \subseteq s \) and if applied in \(s \), results in the state \(s' = (s \setminus \text{del}(o)) \cup \text{add}(o) \). A sequence of actions \(o_0, o_1, \ldots, o_n \) is applicable in state \(s_0 \) if \(o_0 \) is applicable in \(s_0 \) and results in state \(s_1 \), \(o_1 \) is applicable in \(s_1 \) and results in \(s_2 \), and so on. The cost of an action sequence is the sum of the action costs, \(\sum_{i=0}^{n} C(o_i) \). The state resulting from applying action sequence \(\pi \) in state \(s \) is denoted by \(s[\pi] \). An action sequence \(o_0, o_1, \ldots, o_n \) is a plan for \(\Pi \) if \(G \subseteq s_0[\langle o_1, o_2, \ldots, o_n \rangle] \), and it is an optimal plan if no cheaper plan exists.

We begin by describing a straightforward compilation of DPPS tasks with explicitly specified possible data chunks and no memory constraints. Given a DPPS task with processors \(N \), data chunks \(D \), computations \(A \), and without memory constraints, we show how to construct a STRIPS task \(\Pi = (P, O, C, s_0, G) \), such that there is a cost-preserving one-to-one correspondence between solutions for \(\Pi \) and solutions to the DPPS task. The propositions are \(P = \{ \text{holds}(n, d) \mid n \in N, d \in D \} \), and they describe which processor currently holds which data chunk. The operators of \(\Pi \) are given by \(O = \{ \text{transmit}(n_1, d, n_2), \text{delete}(n_1, d), \text{compute}(n_1, a) \mid n_1, n_2 \in N, d \in D, a \in A \} \). The transmit operators are described by \(\text{transmit}(n_1, d, n_2) = \{ \langle \text{holds}(n_1, d), \langle \text{holds}(n_2, d), \emptyset \rangle, \langle \text{holds}(n_1, d), \emptyset \rangle \text{ with a cost of } T(n_1, d, n_2) \} \). The delete operators are described by \(\text{delete}(n_1, d) = \{ \langle \text{holds}(n_1, d), \emptyset \rangle, \langle \text{holds}(n_1, d), \emptyset \rangle \text{ with a cost of } 0 \} \). Finally, for \(a = (I, O, C) \), the compute operators are described by \(\text{compute}(n_1, a) = \{ \langle \text{holds}(n_1, d), \emptyset \rangle \text{ with a cost of } C(n_1) \} \).

It is not hard to verify that any solution for the planning task \(\Pi \) is also a solution to the given DPPS task, and that the cost of the solutions is the same. Note that the only reason we require that the DPPS task does not have any memory constraints is that STRIPS does not support numerical variables, and so we cannot formulate the requirement that a processor has enough free memory to store any data chunks it computes or receives by transmission. However, numerical extensions to STRIPS do exist (Fox and Long 2003), and
we can use such a numerical planning framework to also pose memory capacity constraints.

The more substantial issue remains the restriction to explicitly specified possible data chunks, because typically we should expect the data chunks to be specified only implicitly. This issue has been addressed already in the planning literature, and in particular, in the context of the DPADL action language (Golden 2002). Here, however, we are interested in using off-the-shelf STRIPS planners, and fortunately, this issue can be overcome in STRIPS as well. Below we demonstrate this by describing the DPPS task that encodes relational algebra query optimization, which was described informally in the previous section. The propositions we use here encode a relational algebra expression tree. The objects, i.e., the parameters to predicates and operators, correspond to nodes in a relational algebra expression tree, as well as selection predicates, field lists, and aggregation functions. We do not give a full description here for the sake of brevity, but illustrate the main points.

First, we have propositions that describe the structure of the relational algebra expression tree. Each node in the tree has an expression type, and each type of node has either one subexpression (select, project, and aggregation) or two subexpression (cross-product, union, and difference). Additionally, select nodes also have a selection predicate, project nodes have a list of fields, and aggregation nodes have a list of fields and an aggregation function. For example, the proposition \(\text{select}(e, p, e_1) \), indicates that node \(e \) is the result of applying selection predicate \(p \) on node \(e_1 \), or in relational algebra notation \(e = \pi_p(e_1) \). Another example is \(\text{crossproduct}(e, e_1, e_2) \) which indicates that \(e \) is the result of the cross-product of \(e_1 \) and \(e_2 \), or \(e = e_1 \times e_2 \). The full list of predicates, with their interpretation in relational algebra, is given in Table 1.

A second type of proposition we use is \(\text{clear}(e) \), which indicates that \(e \) has not already been set, that is, that \(e \) is currently not part of any relational algebra expression. Additionally, the proposition \(\text{eqv}(e_1, e_2) \) indicates that the expressions represented by \(e_1 \) and \(e_2 \) are equivalent. Finally, as in the previous construction, we have the proposition \(\text{holds}(n, d) \) for every \(n \in N \) and every relational algebra expression node \(d \), which indicates that processor \(n \) hold the data chunk \(d \).

We also construct three types of operators. First, we have the transmission and deletion operators, which are part of any DPPS task, as described previously. As before, the cost of the transmission operators stems from the DPPS task’s transmission cost function, and the cost of the delete operators is 0.

Second, we have operators corresponding to actual relational algebra operations: selection, projection, aggregation, cross-product, union, and difference. The cost of these operators reflects the estimated execution cost. Each such operator is also parametrized by which processor performs the computation. For example, the operator \(\text{doselect}(n, e_1, p, e_2) \) requires \(\text{clear}(e_1) \) and \(\text{holds}(n, e_2) \), adds the propositions \(\text{select}(e_1, p, e_2) \) and \(\text{holds}(n, e_1) \), and deletes \(\text{clear}(e_1) \). As before, operators representing relational algebra “macros”, such as join, can also be encoded. For example, an operator joining relations \(e_1 \) and \(e_2 \) over predicate \(p \) creates two nodes: one representing \(e_1 \times e_2 \), and another representing \(\pi_p(e_1 \times e_2) \). However, the cost of this operator is the cost of performing the join, rather than the cost of doing the full cross-product and selection.

Finally, we have operators corresponding to equivalence rules. The cost of these operators is zero, because, as noted earlier, they are not actual computations, but are rather used by the solver to “prove” that its solution is correct. These operators are all encoded so that they construct a new relational algebra expression node — the “input” is never modified — and add the proposition that indicates that these expression are equivalent. For example, the commutativity of selection, that is, equivalence rule \(\sigma_p(\pi_q(X)) = \pi_q(\sigma_p(X)) \) is encoded by the operator described here:

<table>
<thead>
<tr>
<th>commute-select</th>
<th>(SpSqX, SqX, X, SqSpX, SpX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre</td>
<td>select(SqX, q, X) & select(SpSqX, p, SqX) & clear(SpSpX) & clear(SqX)</td>
</tr>
<tr>
<td>add</td>
<td>select(SpX, p, X) & select(SqSpX, q, SpX) & eqv(SpSpX, SqSpX)</td>
</tr>
<tr>
<td>del</td>
<td>clear(SpX) & clear(SqSpX)</td>
</tr>
</tbody>
</table>

We can always encode these equivalence rules as operators with a fixed number of parameters, because the equivalence rules are local in nature, in the sense that they do not look deeper than one or two levels into the input relational algebra expression tree. One important point to note is that STRIPS does not support the creation of new objects. Therefore, the number of relational algebra expression nodes that are used in the solution must be set before planning begins. However, an algorithm which iteratively increases the number of nodes can be used to overcome this limitation.

Theorem 6 Let \(\Pi \) be a DPPS task, whose data chunks are specified by expression trees, such that each computation only looks at the top \(l = O(1) \) layers in the input expression trees, and let \(k \in \mathbb{N} \). There exists a STRIPS task \(\Pi' \) that can be constructed from \(\Pi \) in time polynomial in \(|\Pi| \) and \(k \), such that, if \(\Pi \) has a solution consisting of at most \(k \) operators, then

(i) \(\Pi' \) is solvable, and

(ii) every plan \(\pi' \) for \(\Pi' \) induces a solution \(\pi \) for \(\Pi \) of the same cost.

\(^1\)This condition did not appear in the original paper, but is necessary here.

<table>
<thead>
<tr>
<th>Proposition</th>
<th>RA Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>select(e, p, e_1)</td>
<td>(e = \pi_p(e_1))</td>
</tr>
<tr>
<td>project(e, f, e_1)</td>
<td>(e = \pi_f(e_1))</td>
</tr>
<tr>
<td>aggregate(e, f, a, e_1)</td>
<td>(e = \mathcal{A}_{f,a}(e_1))</td>
</tr>
<tr>
<td>crossproduct(e_1, e_2)</td>
<td>(e = e_1 \times e_2)</td>
</tr>
<tr>
<td>union(e_1, e_2)</td>
<td>(e = e_1 \cup e_2)</td>
</tr>
<tr>
<td>diff(e_1, e_2)</td>
<td>(e = e_1 \setminus e_2)</td>
</tr>
</tbody>
</table>

Table 1: STRIPS propositions and their interpretation in relational algebra
Proof: We construct Π' by defining two types of propositions. First, we have propositions that describe expression tree structures — for each expression type θ we have a proposition $node_{\theta}$, whose first parameter is the node at the root of the expression, and whose other parameters are the children. Second, we have a proposition $clear$, which is true iff an expression tree object is “blank”, that is, has not been assigned a value yet.

For each computation primitive $a \in A$, we create a planning operator do_{a} which emulates this computation. As in our previous constructions, this action is parametrized by the processor to perform the computation on, and requires that this processor hold all input data chunks. It is also parametrized by the object (or objects) where the output expression tree (or trees) will be constructed — we add a precondition that these output objects are all $clear$. The add effects of this operator build the output expression trees, placing them in the given output objects, possibly using subtrees of the input expression trees as subtrees of the output expression trees. Since each computation only looks at the top l layers of its input expressions, it is always possible to do this using $O(2^l) = O(1)$ preconditions. Note that operators never modify existing expression trees, only create new ones, and therefore it is safe to share common subtree structures between different nodes. As in our previous constructions, we also add operators for data transmission. Clearly, any valid solution for Π' induces a solution for Π, by performing the same computations and data transmissions.

Let m denote the maximum number of outputs of all primitive computations, that is $m = max\{|I, O, C|E_{A}[\bar{O}])\}$. We initialize Π' with $m \cdot k$ blank objects (that is, objects which are initially $clear$), as well as objects that describe the initial state of the computation. It is easy to see that if Π has a solution consisting of at most k operators, then it will never use more than $m \cdot k$ blank objects, and thus Π' is solvable.

In order to provide some empirical evidence that our approach is practical, we have encoded a DPPS task which describes our running example of multiple histogram computations over a single table, as a planning task. We assume the table is partitioned by its primary key across a cluster with n processors, and that the user wants a histogram of the table by f different fields. The computational operators here are $count(d_i)$ which generates f partial histograms, one by each field, from table fragment d_i, and $merge(h_i)$ which requires all n partial histograms according to field i, and merges them into a histogram of the full table by field i. We did not model memory constraints, and so this domain is delete-free.

We varied n from 2 to 64 and f from 2 to 6, and solved these planning tasks with the Fast Downward planner (Helmert 2006) using greedy best first search with the FF heuristic (Hoffmann and Nebel 2001). Figure 1 shows the total planning time for these different values, with a separate line for each value of f. The hardest planning problem, of computing a histogram by 6 different fields across a cluster with 64 processors, was still solved in under a minute. Note that we did not implement the operators execution, and so we can not compare to actual distributed DBMS solutions, for which we can only measure query execution time. Finally, we remark that although the planner we used does not guarantee optimal solutions, in this case all the solutions that were obtained were optimal, and scanned the table only once.

Summary
We have described a formal model of data-parallel program synthesis, DPPS, which generalizes the specific data processing systems developed in the area of data-parallel computing. The key advantage of working at the level of the DPPS model is that it is easy to separate the modeling of the domain (i.e., the data chunks and computations) from the specific task (i.e., the network topology, current state of the system, and current queries of the users). The domain modeling could be done by the software development team, by symbolically annotating user-defined operators. The specific task is generated when a query is given to the system by a user, who need not be aware of implementation techniques or network topology. This allows the software development team to focus on optimizing individual low-level functions, while the system automatically generates an optimized query plan.

DPPS is more expressive than relational algebra with aggregate functions, allowing for both taking into account the distributed nature of data-parallel computing, as well as incorporating arbitrary user-defined operators of the form sup-

![Figure 1: Runtime for obtaining f histograms over different fields from the same table, fragmented across n processors](image-url)
ported by the current data-parallel computing systems. The expressivity of DPPS makes reasoning in it computationally hard in the worst case, and we discuss various sources of this time complexity. Beyond the worst-case complexity analysis, we showed how DPPS tasks can be compiled into STRIPS, a standard formalism for deterministic action planning. Using a canonical histogram computation example, we demonstrated how one can use off-the-shelf STRIPS planning tools to solve such DPPS tasks.

In terms of future work, examining the relationship between traditional measures for query complexity from the DB community, and the complexity of the corresponding planning task could lead to cross-fertilization between the fields. Additionally, studying the relationship between tractable fragments of DPPS and tractable fragments of planning could also lead to some interesting results.

Acknowledgements

This work was carried out in and supported by the Technion-Microsoft Electronic-Commerce Research Center. We thank the anonymous reviewers for their helpful comments.

References

