Multi-Level Workforce Planning in Call Centers

Arik Senderovich

Based on MSc thesis supervised by Prof. Avishai Mandelbaum
Industrial Engineering & Management
Technion

August 2012
Outline

1. Introduction to Workforce Planning
 • Definition and Planning Levels
 • Our goal – Multi-Level Model for Call Centers
 • Call Center characteristics for Workforce Planning
2. Multi-Level Workforce Planning in Call Centers
 • Multi-Level Framework – MDP
 • Applying two models to test case Call Center
 • Model Validation
 • Parameter Estimation
 • Results and insights
3. Future Research
Workforce Planning - Definition

A process of aligning workforce capacity with service/production requirements and organizational goals

- Strategic Goals: Sales, Customer satisfaction
- Operational Goals: Waiting times, Abandonment

Literature Review: Robbins (2007)
Workforce Planning Levels

Top-Level Models: Turnover, Promotions, Recruitment

Low-Level Models: Training, Absenteeism, Protocols

Strategic Planning
- Months, Quarters, Years

Planning Periods

Operational Planning
- Events, Hours, Days
Top-Level Planning

• **Planning Horizon**: Quarters, Years,…
• **Planning periods**: Weeks, Months,…
• **Control**: Recruitment and/or promotions
• **Parameters**:
 • Turnover rates (assumed uncontrolled)
 • Demand/Workload/Number of Jobs on an aggregate level
 • Promotions are sometimes uncontrolled as well (learning)
 • Costs: Hiring, Wages, Bonuses etc.
• **Operational regime is often ignored**

Literature Review: Bartholomew (1991)
Low-Level Planning

- **Planning horizon**: Months
- **Planning periods**: Events, Hours, Days, …

Control:
- Daily staffing (shifts, 9:00-17:00, …)
- Operational regime (work scheduling and routing, managing absenteeism, …)

Parameters:
- Staffing constraints (shift lengths, work regulations, …)
- Operational Costs (shifts, extra-hours, outsourcing, …)
- Absenteeism (On-job, shift)
- Detailed level demand

Literature Review:
Dantzig (1954); Miller et al. (1974); Pinedo (2010)
Workforce Utilization in Call Centers

Many customer types, call types, miscellaneous tasks,....
Our goal:

Develop and apply a methodology for Multi-Level Workforce Planning in Call Centers
Multi-Level Planning

- A **single** dynamic model that accounts for **both** planning levels:
 - Low-Level staffing levels do not exceed aggregate constraints
 - Top-Level employed numbers adjusted to meet demand at low-level time resolution
- Dynamic Evolution:

Literature Review:
Abernathy et al., 1973; Bordoloi and Matsuo, 2001; **Gans and Zhou, 2002**
Call Centers – Model Selection

• High varying demand (minutes-hours resolution)
• Tradeoff between efficiency and service level
• High operational flexibility - dynamic shifts
• Low employment flexibility - agents learn several weeks
• Multiple skills (Skills-Based Routing)

Proposed models are tested against real Call Center data
Our Framework

- Modeling Workforce Planning in Call Centers via Markov Decision Process (MDP) in the spirit of Gans and Zhou, 2002:

- Control: Recruitment into skill 1
- Uncontrolled: Learning and Turnover
- States $i=1,...,m$ may correspond to agent-skills, service speeds or length of service
Model Formulation – Time, State, Control

- T - top-level planning horizon (example: quarters)
- $t = 0,1,...,T$ - top-level time periods (example: months)
- State space - workforce at the beginning of period t: $n_t = (n_{1,t}, n_{2,t},..., n_{m,t})$
- $x_t (\geq 0)$ - Control variable at the beginning of period t
- Post-hiring state-space vector: $\tilde{n}_t = (y_t, n_{2,t},..., n_{m,t})$

with $y_t = n_{1,t} + x_t$

- State-space and control are **continuous** (large Call Centers)
Model Formulation – Learning & Turnover

• **Turnover** at the end of period t:

 \[q_t = (q_{1,t}(y_{t}), q_{2,t}(n_{2,t}), ..., q_{m,t}(n_{m,t})) \]

 with

 \[q_{i,t}(k) = \tilde{q}_{i,t}k \]

 \[\tilde{q}_{i,t} \] - stochastic proportion of agents who turnover

• **Learning** from skill i to $i+1$, at the end of period t, is possible only for those who do not turnover:

 \[l_t = (l_{1,t}(y_{t}), l_{2,t}(n_{2,t}), ..., l_{m,t}(n_{m,t})) \]

 with

 \[l_{i,t}(k) = \tilde{l}_{i,t}(1 - \tilde{q}_{i,t})k \]

 \[\tilde{l}_{i,t} \] - stochastic proportion of agents who learn, \(\tilde{l}_{m,t} = 0 \)
Model Formulation - Dynamics

- The system evolves from time t to time $t+1$:

$$n_{1,t+1} = (1 - \tilde{l}_{1,t})(1 - \tilde{q}_{1,t}) y_t$$

$$n_{2,t+1} = (1 - \tilde{l}_{2,t})(1 - \tilde{q}_{2,t}) n_{2,t} + \tilde{l}_{1,t} (1 - \tilde{q}_{1,t}) y_t$$

$$n_{i,t+1} = (1 - \tilde{l}_{i,t})(1 - \tilde{q}_{i,t}) n_{i,t} + \tilde{l}_{i-1,t} (1 - \tilde{q}_{i-1,t}) n_{i-1,t} \quad i = 3, ..., m$$

Markov property...
Model Formulation - Demand

• During period t demand is met at low-level sub-periods $s=1,\ldots,S$ (consider half-hours)

• Given J customer types arriving:
 • We define D_t as demand matrix (size $J \times S$)
 • Matrix components are $D_{t,s}^{j}$:
 • Amount of arriving calls at time t, sub-period s of call type j
 • Example: 10 calls, January 1st, 7:00-7:30, Consulting customer
Model Formulation: Costs

• Low-Level planning is embedded in Top-Level planning in form of an **operational cost function**: $O_t(\tilde{n}_t, D_t)$
• Operational costs considered: **shifting expenses, outsourcing** and **overtime**
• $O_t(\tilde{n}_t, D_t)$ is a **least-cost solution** to the Low-Level problem, given period t employment levels, recruitment and demand

• Top-Level costs at time t:
 • h - Hiring cost of a single agent
 • W_i - Wages and bonuses for skill-level i agents
Model Formulation: Discounted Goal Function

The discounted total cost that we want to minimize is:

$$\min_{x_0, \ldots, x_T} E\left\{ \sum_{t=0}^{T} \left[\alpha^t \left(h x_t + W_1 y_t + \sum_{i=2}^{m} W_i n_{i,t} + O_t (\tilde{n}_t, D_t) \right) \right] \right\}$$

subject to \textbf{system dynamics}

Gans and Zhou: if the operating cost function is jointly convex in \tilde{n}_t there exists an \textbf{optimal} “hire-up-to” policy:

$$x_t^* = \begin{cases}
 y_t^* (n_{2,t}, \ldots, n_{m,t}) - n_{1,t} & \text{if } y_t^* (n_{2,t}, \ldots, n_{m,t}) \geq n_{1,t} \\
 0 & \text{otherwise}
\end{cases}$$
“Hire-up-to” policy - Example

• January workforce – 100 employees
• After turnover – 90 employees
• February demand – 110 employees
• Myopic “hire-up-to” – 20 recruits
• Sometimes NOT enough considering long-run parameters (demand, flow,…)
• For example: DP dictates hire 30
• If the number is less than 0 then we hire 0
Modeling the Operating Cost Function

• We propose the following model for $O_t(\tilde{n}_t, D_t)$:
 - $w = 1, \ldots, W$ - feasible shifts during time period t
 - $x_{i,w}$ - number of level-i agents staffed to shift w
 - $c_{i,w}$ - cost for staffing level-i agent to shift w

\[
O_t(\tilde{n}_t, D_t) = \min_{x_{i,w} \geq 0} \sum_{i=1}^{m} \sum_{w=1}^{W} c_{i,w} x_{i,w}
\]

s.t. \[
\sum_{w: l(w, s) = 1} x_{i,w} \geq N_i(D_t^s), \quad \forall i, s
\]

\[
\sum_{w=1}^{W} x_{1,w} \leq y_t
\]

\[
\sum_{w=1}^{W} x_{i,w} \leq n_{i,t}
\]
Applying 2 Models to Test Case Call Center

- Models are special cases of Gans and Zhou, 2002
- Validating assumptions and estimating parameters using real Call Center data
- Comparing results – Models vs. Reality
Test Case Call Center: An Israeli Bank

- Inbound Call Center (80% Inbound calls)
- Operates six days a week
 - Weekdays - 7:00-24:00, 5900 calls/day
 - Fridays – 7:00-14:00, 1800 calls/day
- Top-Level planning – quarters
- Low-Level planning – weeks
- Three skill-levels:
 - Level 1: General Banking
 - Level 2: Investments
 - Level 3: Consulting
Model Validation and Application

• **Training set:** Year 2010 SEEData + Agent Career data

• **Test set:** Jan-Mar 2011 SEEData

• **Top-Level planning horizon:** 1st Quarter of 2011

• **Top-Level time periods:** Months (January-March 2011)

• **Sub-periods (low-level periods):** Half-hours
Model 1: Base Case Model

- Hiring
- Course
- Turnover: Dropouts, Entrants

Model 2: Full Model

- Hiring
- Course
- Level 1: Turnover, Learning
- Level 2: Turnover
- Level 3: Turnover

Courses: Hiring → Course → Agent → Turnover

Levels: Course → Level 1 → Turnover → Learning → Level 2 → Turnover → Level 3 → Turnover
Model 1: Assumptions

- **Single** agent skill (no learning/promotion)
- Deterministic and stationary turnover rate
- Stationary demand
- Recruitment lead-time of one period - **Reality**
Model 1: Formulation

\[
\min_{g_0, \ldots, g_T} \sum_{t=0}^{T} \left[h \frac{g_t}{1 - q_0} + \bar{W} (g_t + n_t) + O_t (\tilde{n}_t, D_t) \right]
\]

Subject to dynamics:

\[
\begin{align*}
y_t &= n_t + g_t \\
g_t &= (1 - q_0) x_{t-1} \geq 0 \\
n_{t+1} &= y_t (1 - q_1)
\end{align*}
\]
Validating Assumptions: No Learning

No Learning assumption is not valid but Model 1 can still be useful due to simplicity
Validating Assumptions: Turnover

Monthly turnover rate (2007-2010):

Average turnover rate of 2010 serves estimate – 5.27%
Validating Assumptions: Stationary Demand

- Demand in half-hour resolution:
 - Not too long - Capturing variability
 - Not too short – Can be assumed independent of each other
- Comparing two consecutive months in 2010, for total half-hour arriving volume:

Stationary demand is a reasonable assumption
Validating Assumptions: Stationary Demand

- We now examine the half-hours for entire year 2010:
Model 1: Low-Level Planning

\[O_t(y_t, D_t) = \min_{x_{w} \geq 0} \sum_{w=1}^{W} \bar{c}_{w} x_{w} \]

s.t. \[\sum_{w: I(w,s) = 1} x_{w} \geq N(D_{t}^{s}), \quad \forall s \]

\[\sum_{w=1}^{W} x_{1,w} \leq y_{t} \]
Modeling Demand

• General additive model (GAM) was fitted to demand of October-December 2010 (Hastie et al., 2001):

 • Demand influenced by two effects: Interval effect and Calendar day effect

\[D_{t}^{s,c} = \alpha_{s} + \gamma_{c} + \varepsilon_{s,c} \]

• Fitting GAM for each customer class \(j \) did not influence results

Forecasting demand in Call Centers - Aldor-Noiman et al., 2008
Modeling Demand – Weekdays and Fridays

Weekdays effect was not significant for total demand
Modeling Demand - Weekday Half-Hour Effect

![Graph showing the relationship between time and arrivals for the week.](image)
Modeling Demand - Calendar Day Effect
Modeling Demand – Goodness of Fit

RMSE = 39 calls
(Approx. 5 agents per half-hour)

Not much better than fitting whole (de-trended) year 2010
Agents Online – Learning From Data

Learning curve, patience, service times, protocols
Staffing Function – Non-linear Spline

\[z_s = f(D_t^s) + \varepsilon \]
On-job Absenteeism

• **During shifts:** agents go on breaks, make outgoing calls (sales, callbacks) and perform miscellaneous tasks
• More (half-hour) staffing is required
• Israeli bank policy:
 • Only **breaks** and some **miscellaneous tasks** are recognized
 • Outgoing calls and other back-office work are important, but assumed to be postponed to “slow” hours
 • Factor of 11% compensation at Top-Level workforce (uniform over all shift-types, daytimes etc.)
• We model absenteeism at low-level resolution and show that it is time varying (great influence on planning)
• We use **Server Networks** to answer questions on agent utilization profile
Newly hired agent

Agent 227, Whole day
October 4th, 2010
Old timer

Agent 513, Whole day
October 4th, 2010
Defining and Modeling Absenteeism

• Absenteeism rate per interval s as:

$$p_s = \frac{\text{Total absenteeism per interval}}{\text{Total staffing per interval}} = \frac{a_s}{z_s + a_s}$$

• Absenteeism is defined as breaks and other productive work (management decision)

• GAM model is fitted (again) to absenteeism rate with covariates:
 • Time of day
 • Total arrivals per period

• On-shift absenteeism: between 5% and 35% (average of 23% vs. 11% bank assumption)
Fitting Absenteeism – Time of Day
Fitting Absenteeism – Arrivals

![Graph showing the relationship between effect and total arrivals per interval.](image-url)
Shift Absenteeism

• Shift absenteeism: agent scheduled to a certain shift and does not appear (health, AWOL, ...)

• We model it as probability of not showing up for shift given scheduling
 • No supporting data, thus assuming 12% overhead corresponding to bank policy
 • Given data parameters can be estimated and plugged into operational cost function
Low-Level Planning: Staffing

\[N(D_t^s) = z_s + a_s = \frac{z_s}{(1 - p_s)} \]

\[O_t(y_t, D_t) = \min_{x_w \geq 0} \sum_{w=1}^{W} \bar{c}_w x_w \]

s.t. \[\sum_{w: I(w,s)=1} x_w \geq \hat{N}(D_t^s), \quad \forall s \]

\[\sum_{w=1}^{W} x_{1,w} \leq y_t \]
Model 1: Multi-Level Solution

- **Myopic** single-stage “hire-up-to” policy is optimal:
 - Low-Level planning **sets** number of employees for each time period t
 - **Gaps** are known in advance and filled
 - Recruitments are made one period **ahead**

- **Example:**
 - Low-Level solution January 2011 is 100 employees
 - In the beginning of December we have 100 employees
 - We know that 10 will turnover at the end of December
 - We hire in December 10 to replace them (if no dropouts occur)
Model 2 : Assumptions

• Model 1 is extended to include 3 skill-levels
• Hiring lead-time of 1 period (as before)
• No stationary assumptions on turnover, learning and demand are required, but for simplicity we assume all three
Estimating Learning and Turnover

- We follow the Maximum Likelihood estimate proposed in Bartholomew, 1991 and use the average past transaction proportions:

 \[l_i = \frac{\bar{n}_{i,i+1}}{\bar{n}_i} \]

- Proportion of learning skill i+1 is estimated with past average proportions of learners:
 - L1 to L2 - 1.5%
 - L2 to L3 - 1.1%

- Total turnover is estimated as in Model 1:

<table>
<thead>
<tr>
<th></th>
<th>5.27%</th>
<th>Turnover Rate - Stocks</th>
<th>Turnover Rate - Staffing</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>0.0396</td>
<td>0.0383</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>0.0084</td>
<td>0.0089</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>0.0047</td>
<td>0.0055</td>
<td></td>
</tr>
</tbody>
</table>
Half-hour staffing

Staffing agents online for all three levels:

Level 1

Level 2

Level 3

On-job absenteeism is modeled for all three levels
Shift-absenteeism – 12% as before
Model 2: Solution

• Due to model assumptions problem is a LP
• **Myopic** “hire-up-to” policy is not necessarily optimal
• Multi-stage “hire-up-to” is promised
• **Problem:** Some skill-levels may be *unattainable* due to low learning proportions
• **Solution:** Bank recruitment (in reality and in our model)
Results Overview
Total Workforce
Recruitment

![Graph showing recruitment numbers for different models and periods]

- Model 1
- Model 2 - New Recruits
- Model 2 - Bank recruits
- Real Recruitment

- January: 79
- February: 3
- March: 12

Recruitment numbers for different models and periods.
Models vs. Reality

• Uniformly high service levels (5%-15% aban. rate)
• Absenteeism is accurately estimated (influences peak-hours with high absenteeism rate)
• No overtime assumed – in reality each person is equivalent to more than one full-time employee
• In reality budget “tricks” are possible: Engineer for 3 agents
• Recruitment in large numbers is usually impossible and therefore smoothed
• Having all that said – let us observe reality
In reality – growth is gradual
Comparing Total Costs

Taking learning under consideration can save approx. 153,000 NIS - per quarter
Why is Model 2 “less expensive”?

• Accurate workforce planning at Level 2 and Level 3
• “Free” recruitment from the bank
• But, additional wage is considered for Level 3 employees recruited from bank
• If bank recruitment continues all year then it might be more expensive in the long run (we planned for 1 quarter)
• Bank employees – not infinite pool
Rolling horizon updates

• Planning Horizons are to be selected:
 • Long enough to accommodate Top-Level constraints (recruitment lead-times, turnover, …)
 • Short enough for stationary assumptions to hold and statistical models to be up to date
 • Improve estimates through newly updated data
• Workforce Planning (cyclical) Algorithm:
 1. Plan a single quarter (or any planning horizon where assumptions hold) using data
 2. Towards the end of planning period update models using new data (demand modeling, staffing function, turnover, learning, absenteeism…)

Future Research

• Solve the full model with the addition of controlled promotion rates

• Prove “hire-up-to” optimality for:
 • Recruitment to all levels (non-linear operating function, stochastic time-varying turnover and learning)
 • Controlled promotions instead of learning

• Validate our models for bank’s new data (daily updated)

• Simulation-based optimization for Low-Level planning (Feldman, 2010)

• Server Networks and their applications
Thank you…
Questions/Remarks?