Stochastic Local Search for SMT: a Preliminary Report (Extended Abstract)

Alberto Griggio, Roberto Sebastiani, and Silvia Tomasi

DISI, Università di Trento, Italy.
1. Motivations and goals
2. Background
3. Stochastic Local Search for SMT
 - WALKSMT: basic schema
 - Enhancements
4. Preliminary Experimental Evaluation
 - Experiments on SMT-LIB Instances
 - Experiments on Random Instances
5. Conclusions and potential research directions
Outline

1 Motivations and goals

2 Background

3 Stochastic Local Search for SMT
 - WALKSMT: basic schema
 - Enhancements

4 Preliminary Experimental Evaluation
 - Experiments on SMT-LIB Instances
 - Experiments on Random Instances

5 Conclusions and potential research directions
Motivations and Goals

Motivations

- “Lazy” approach to SMT: integration of DPLL and a T-solver.
- SAT: stochastic local-search (SLS) procedures sometimes outperform DPLL on satisfiable instances (unstructured problems).
- Therefore, it is a natural research question to wonder whether SLS can be exploited successfully also inside SMT tools.

Goal

To start investigating the issue of using SLS in SMT.
Motivations and Goals

Motivations

- “Lazy” approach to SMT: integration of DPLL and a T-solver.
- SAT: stochastic local-search (SLS) procedures sometimes outperform DPLL on satisfiable instances (unstructured problems).
- Therefore, it is a natural research question to wonder whether SLS can be exploited successfully also inside SMT tools.

Goal

To start investigating the issue of using SLS in SMT.
Outline

1 Motivations and goals

2 Background

3 Stochastic Local Search for SMT
 - WALKSMT: basic schema
 - Enhancements

4 Preliminary Experimental Evaluation
 - Experiments on SMT-LIB Instances
 - Experiments on Random Instances

5 Conclusions and potential research directions
Stochastic Local Search for SAT

Local Search (LS) algorithms
- typically incomplete
- start at some location of the search space
- iteratively move from the current to a neighbouring location taking decisions on the base of local information

Stochastic Local Search (SLS) algorithms
- LS algorithms make randomized choices during the search
- successfully applied to \mathcal{NP}-complete decision problems
- for SAT, WalkSAT is a popular (family of) SLS-based algorithm(s)
Local Search (LS) algorithms
- typically incomplete
- start at some location of the search space
- iteratively move from the current to a neighbouring location taking decisions on the base of local information

Stochastic Local Search (SLS) algorithms
- LS algorithms make randomized choices during the search
- successfully applied to \(\mathcal{NP} \)-complete decision problems
- for SAT, WalkSAT is a popular (family of) SLS-based algorithm(s)
The WalkSAT Family Schema

Require: CNF formula \(\varphi \), MAX_TRIES, MAX_FLIPS

1: for \(i = 1 \) to MAX TRIES do
2: \(\mu \leftarrow \text{INITIALTRUTHASSIGNMENT}(\varphi) \)
3: for \(j = 1 \) to MAX_FLIPS do
4: if \((\mu \models \varphi) \) then
5: return SAT
6: else
7: \(c \leftarrow \text{CHOOSE_UNSATISFIEDCLAUSE}(\varphi, \mu) \)
8: \(\mu \leftarrow \text{NEXTTRUTHASSIGNMENT}(\varphi, c, \mu) \)
9: end if
10: end for
11: end for
12: return UNKNOWN

- differ for different techniques for \text{INITIALTRUTHASSIGNMENT}, \text{CHOOSE_UNSATISFIEDCLAUSE} and \text{NEXTTRUTHASSIGNMENT}
- different degrees and forms of greediness and randomness
The WalkSAT Family Schema

Require: CNF formula φ, MAX_TRIES, MAX_FLIPS

1: $\text{for } i = 1 \text{ to } \text{MAX_TRIES} \text{ do}$
2: $\mu \leftarrow \text{INITIAL_TRUTH_ASSIGNMENT}(\varphi)$
3: $\text{for } j = 1 \text{ to } \text{MAX_FLIPS} \text{ do}$
4: $\text{if } (\mu \models \varphi) \text{ then}$
5: return SAT
6: else
7: $c \leftarrow \text{CHOOSE_UNSATISFIED_CLAUSE}(\varphi, \mu)$
8: $\mu \leftarrow \text{NEXT_TRUTH_ASSIGNMENT}(\varphi, c, \mu)$
9: end if
10: end for
11: end for
12: return UNKNOWN

- differ for different techniques for \text{INITIAL_TRUTH_ASSIGNMENT}, \text{CHOOSE_UNSATISFIED_CLAUSE} and \text{NEXT_TRUTH_ASSIGNMENT}
- different degrees and forms of greediness and randomness
Outline

1. Motivations and goals
2. Background
3. Stochastic Local Search for SMT
 - \textit{WALKSMT}: basic schema
 - Enhancements
4. Preliminary Experimental Evaluation
 - Experiments on SMT-LIB Instances
 - Experiments on Random Instances
5. Conclusions and potential research directions
SMT from a SAT perspective

SMT on φ: solve a *partially-invisible* SAT formula $\varphi^p \land \tau^p$ s.t.
- φ^p is the “visible” part (Boolean abstraction of φ)
- τ^p is the “invisible” part (the B.a. of the set of \mathcal{T}-lemmas induced by the theory \mathcal{T} on the atoms of φ)

In traditional “lazy” SMT solvers
- DPLL solver knows φ^p but not τ^p (\mathcal{T}-solver “knows” τ^p)
- whenever $\mu^p \models \varphi^p$, \mathcal{T}-solver checks whether μ^p falsifies τ^p and returns one falsified clause c^p in τ^p
- DPLL uses c^p to drive the future search (optionally add it to φ^p)

[the superscript p denotes the Boolean abstraction of a \mathcal{T}-formula]
SMT from a SAT perspective

SMT on \(\varphi \): solve a \textit{partially-invisible} SAT formula \(\varphi^p \land \tau^p \) s.t.
- \(\varphi^p \) is the “visible” part (Boolean abstraction of \(\varphi \))
- \(\tau^p \) is the “invisible” part (the B.a. of the set of \(\mathcal{T} \)-lemmas induced by the theory \(\mathcal{T} \) on the atoms of \(\varphi \))

In traditional “lazy” SMT solvers
- DPLL solver knows \(\varphi^p \) but not \(\tau^p \) (\(\mathcal{T} \)-solver “knows” \(\tau^p \))
- whenever \(\mu^p \models \varphi^p \), \(\mathcal{T} \)-solver checks whether \(\mu^p \) falsifies \(\tau^p \) and returns one falsified clause \(c^p \) in \(\tau^p \)
- DPLL uses \(c^p \) to drive the future search (optionally add it to \(\varphi^p \))

[the superscript \(p \) denotes the Boolean abstraction of a \(\mathcal{T} \)-formula]
Motivations and goals

Background

Stochastic Local Search for SMT
- \textit{WALKSMT: basic schema}
- Enhancements

Preliminary Experimental Evaluation
- Experiments on SMT-LIB Instances
- Experiments on Random Instances

Conclusions and potential research directions
Basic-WalkSMT Schema

Require: SMT(T) CNF formula φ, MAXTRIES, MAXFLIPS

1: \textbf{for} $i = 1$ to MAXTRIES \textbf{do}
2: \hspace{1em} $\mu^p \leftarrow \text{INITIALTRUTHASSIGNMENT}(\varphi^p)$
3: \hspace{1em} \textbf{for} $j = 1$ to MAXFLIPS \textbf{do}
4: \hspace{2em} \textbf{if} ($\mu^p \models \varphi^p$) \textbf{then}
5: \hspace{3em} $\langle \text{status}, c^p \rangle \leftarrow T$-solver($\varphi^p, \mu^p$)
6: \hspace{3em} \textbf{if} (status $==$ SAT) \textbf{then}
7: \hspace{4em} \textbf{return} SAT
8: \hspace{3em} \textbf{end if}
9: \hspace{3em} $\mu^p \leftarrow \text{NEXTTRUTHASSIGNMENT}(\varphi^p, c^p, \mu^p)$
10: \hspace{2em} \textbf{else}
11: \hspace{3em} $c^p \leftarrow \text{CHOOSEUNSATISFIEDCLAUSE}(\varphi^p, \mu^p)$
12: \hspace{3em} $\mu^p \leftarrow \text{NEXTTRUTHASSIGNMENT}(\varphi^p, c^p, \mu^p)$
13: \hspace{2em} \textbf{end if}
14: \hspace{1em} \textbf{end for}
15: \hspace{1em} \textbf{end for}
16: \hspace{1em} \textbf{return} UNKNOWN

Intuition: T-solver plays the role of CHOOSEUNSATISFIEDCLAUSE on $\varphi^p \land \tau^p$ when no unsatisfied clause is found in φ^p.
BASIC-WALK\textsc{SMT} Schema

Require: SMT(\(T\)) CNF formula \(\varphi\), MAX_TRIES, MAX_FLIPS

1: \textbf{for} \(i = 1\) to MAX_TRIES \textbf{do}
2: \(\mu^p \leftarrow \text{INITIALTRUTHASSIGNMENT}(\varphi^p)\)
3: \textbf{for} \(j = 1\) to MAX_FLIPS \textbf{do}
4: \textbf{if} \(\mu^p \models \varphi^p\) \textbf{then}
5: \(\langle \text{status}, c^p \rangle \leftarrow T\)-solver(\(\varphi^p, \mu^p\))
6: \textbf{if} \(\text{status == SAT}\) \textbf{then}
7: \hspace{1em} \text{return SAT}
8: \textbf{end if}
9: \(\mu^p \leftarrow \text{NEXTTRUTHASSIGNMENT}(\varphi^p, c^p, \mu^p)\)
10: \textbf{else}
11: \(c^p \leftarrow \text{CHOOSEUNSATISFIEDCLAUSE}(\varphi^p, \mu^p)\)
12: \(\mu^p \leftarrow \text{NEXTTRUTHASSIGNMENT}(\varphi^p, c^p, \mu^p)\)
13: \textbf{end if}
14: \textbf{end for}
15: \textbf{end for}
16: \textbf{return} UNKNOWN

Intuition: \(T\)-solver plays the role of \textsc{ChooseUnsatisfiedClause} on \(\varphi^p \wedge \tau^p\) when no unsatisfied clause is found in \(\varphi^p\).
Outline

1. Motivations and goals
2. Background
3. Stochastic Local Search for SMT
 - WALKSMT: basic schema
 - Enhancements
4. Preliminary Experimental Evaluation
 - Experiments on SMT-LIB Instances
 - Experiments on Random Instances
5. Conclusions and potential research directions
Preprocessing

Simplify the input formula φ through:

unit propagation

- unit-propagate each literal occurring as unit clause in φ
- add to φ the conjunction of all *non-propositional* unit literals eliminated

\implies eliminates purely-propositional variables (and possibly others)

static learning

- augment φ with short “obvious” T-lemmas generated without invoking the T-solver (e.g., $\neg (x > y) \lor \neg (y > z) \lor (x > z)$)

\implies prevents investigating obviously-inconsistent assignments
Preprocessing

Simplify the input formula φ through:

unit propagation

- unit-propagate each literal occurring as unit clause in φ
- add to φ the conjunction of all non-propositional unit literals eliminated

\implies eliminates purely-propositional variables (and possibly others)

static learning

- augment φ with short “obvious” T-lemmas generated without invoking the T-solver (e.g., $\neg(x > y) \lor \neg(y > z) \lor (x > z)$)

\implies prevents investigating obviously-inconsistent assignments
Preprocessing

Simplify the input formula ϕ through:

unit propagation
- unit-propagate each literal occurring as unit clause in ϕ
- add to ϕ the conjunction of all **non-propositional** unit literals eliminated

\implies eliminates purely-propositional variables (and possibly others)

static learning
- augment ϕ with short “obvious” T-lemmas generated without invoking the T-solver (e.g., $\neg(x > y) \lor \neg(y > z) \lor (x > z)$)

\implies prevents investigating obviously-inconsistent assignments
Learning and Unit simplification

Learning

- Learn the \mathcal{T}-lemmas generated by the \mathcal{T}-solver

\Rightarrow avoid finding the same \mathcal{T}-conflict multiple times

Unit simplification

- Before returning a \mathcal{T}-lemma, remove from it (set them to TRUE) all the literals occurring as unit clauses in the (preprocessed) input problem.

\Rightarrow avoid useless flips on these variables
Learning and Unit simplification

Learning

- *Learn* the \(\mathcal{T} \)-lemmas generated by the \(\mathcal{T} \)-solver

\[\Rightarrow \] avoid finding the same \(\mathcal{T} \)-conflict multiple times

Unit simplification

- Before returning a \(\mathcal{T} \)-lemma, remove from it (set them to TRUE) all the literals occurring as unit clauses in the (preprocessed) input problem.

\[\Rightarrow \] avoid useless flips on these variables
Learning and Unit simplification

Learning
- *Learn* the \mathcal{T}-lemmas generated by the \mathcal{T}-solver
- \implies avoid finding the same \mathcal{T}-conflict multiple times

Unit simplification
- Before returning a \mathcal{T}-lemma, remove from it (set them to `TRUE`) all the literals occurring as unit clauses in the (preprocessed) input problem.
- \implies avoid useless flips on these variables
Learning and Unit simplification

Require: SMT(T) CNF formula φ, MAX_TRIES, MAX_FLIPS

1: for $i = 1$ to MAX_TRIES do
2: $\mu^p \leftarrow$ INITIALTRUTHASSIGNMENT (φ^p)
3: for $j = 1$ to MAX_FLIPS do
4: if ($\mu^p \models \varphi^p$) then
5: \langle status, c^p \rangle \leftarrow T$-solver ($\varphi^p, \mu^p$)
6: if (status == SAT) then
7: return SAT
8: end if
9: $c^p \leftarrow$ UNIT-SIMPLIFICATION(φ^p, c^p)
10: $\varphi^p \leftarrow \varphi^p \land c^p$
11: $\mu^p \leftarrow$ NEXTTRUTHASSIGNMENT (φ^p, c^p, μ^p)
12: else
13: $c^p \leftarrow$ CHOOSEUNSATISFIEDCLAUSE (φ^p, μ^p)
14: $\mu^p \leftarrow$ NEXTTRUTHASSIGNMENT (φ^p, c^p, μ^p)
15: end if
16: end for
17: end for
18: return UNKNOWN
Filtering the assignments given to \mathcal{T}-solver

pure-literal filtering

If non-Boolean \mathcal{T}-atoms occur only positively [negatively] in the original formula φ, drop every negative [positive] occurrence of them from μ^p.

\Rightarrow

- reduce the work of \mathcal{T}-solver by removing \mathcal{T}-atoms from the assignment μ^p to be checked,
- improve the chances of finding a \mathcal{T}-consistent assignment.
Filtering the assignments given to \mathcal{T}-solver

pure-literal filtering

If non-Boolean \mathcal{T}-atoms occur only positively [negatively] in the original formula φ, drop every negative [positive] occurrence of them from μ^p to

- reduce the work of \mathcal{T}-solver by removing \mathcal{T}-atoms from the assignment μ^p to be checked,
- improve the chances of finding a \mathcal{T}-consistent assignment
Filtering the assignments given to \(T \)-solver

pure-literal filtering

If non-Boolean \(T \)-atoms occur only positively [negatively] in the original formula \(\varphi \), drop every negative [positive] occurrence of them from \(\mu^p \)

\[\Rightarrow \]

- reduce the work of \(T \)-solver by removing \(T \)-atoms from the assignment \(\mu^p \) to be checked,
- improve the chances of finding a \(T \)-consistent assignment
Learning multiple \mathcal{T}-lemmas

Idea: Since μ^p are total assignments, they may be \mathcal{T}-inconsistent for several different reasons.

\implies Learn more than one \mathcal{T}-lemma.

Multiple learning

- invoke the \mathcal{T}-solver on μ to find a new conflict set η

- if a conflict set η is found,
 - unit-simplify and learn the \mathcal{T}-lemma $\neg \eta$
 - compute a sub-assignment μ' by removing from μ (part or all) the literals occurring in $\neg \eta$

- invoke the \mathcal{T}-solver on μ' to find a new conflict set η', etc.

Note: CHOOSE_UNSATISFIED-Clause picks randomly one of the $\neg \eta$s
Learning multiple \mathcal{T}-lemmas

Idea: Since μ^p are total assignments, they may be \mathcal{T}-inconsistent for several different reasons.

\implies Learn more than one \mathcal{T}-lemma.

Multiple learning

- invoke the \mathcal{T}-solver on μ to find a new conflict set η

- if a conflict set η is found,
 - unit-simplify and learn the \mathcal{T}-lemma $\neg\eta$
 - compute a sub-assignment μ' by removing from μ (part or all) the literals occurring in $\neg\eta$

- invoke the \mathcal{T}-solver on μ' to find a new conflict set η', etc.

Note: CHOOSEUNSATISFIEDCLAUSE picks randomly one of the $\neg\eta$s
Learning multiple \mathcal{T}-lemmas

Idea: Since μ^P are total assignments, they may be \mathcal{T}-inconsistent for several different reasons.

\Longrightarrow Learn more than one \mathcal{T}-lemma.

Multiple learning

- invoke the \mathcal{T}-solver on μ to find a new conflict set η
- if a conflict set η is found,
 - unit-simplify and learn the \mathcal{T}-lemma $\neg \eta$
 - compute a sub-assignment μ' by removing from μ (part or all) the literals occurring in $\neg \eta$
- invoke the \mathcal{T}-solver on μ' to find a new conflict set η', etc.

Note: **CHOOSEUNSATISFIEDCLAUSE** picks randomly one of the $\neg \eta$s
Efficient \mathcal{T}-solvers for LS

DPLL-based SMT solvers
- truth assignments are updated in a stack-based manner
- \mathcal{T}-solvers typically incremental and backtrackable

SLS-based SMT solvers
- truth assignments are updated by flipping an arbitrary literal
- backtrackable \mathcal{T}-solvers are of little use
- it is desirable to be able to remove and add arbitrary literals from a \mathcal{T}-solver without the need of resetting its internal state (some \mathcal{T}-solvers for \mathcal{DL} and $\mathcal{LA}(\mathbb{Q})$ have this capability)
Efficient \mathcal{T}-solvers for LS

<table>
<thead>
<tr>
<th>DPLL-based SMT solvers</th>
</tr>
</thead>
<tbody>
<tr>
<td>- truth assignments are updated in a stack-based manner</td>
</tr>
<tr>
<td>- \mathcal{T}-solvers typically incremental and backtrackable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SLS-based SMT solvers</th>
</tr>
</thead>
<tbody>
<tr>
<td>- truth assignments are updated by flipping an arbitrary literal</td>
</tr>
<tr>
<td>- backtrackable \mathcal{T}-solvers are of little use</td>
</tr>
<tr>
<td>- it is desirable to be able to remove and add arbitrary literals from a \mathcal{T}-solver without the need of resetting its internal state</td>
</tr>
<tr>
<td>(some \mathcal{T}-solvers for \mathcal{DL} and $\mathcal{LA}(\mathbb{Q})$ have this capability)</td>
</tr>
</tbody>
</table>
Outline

1. Motivations and goals
2. Background
3. Stochastic Local Search for SMT
 - WALKSMT: basic schema
 - Enhancements
4. Preliminary Experimental Evaluation
 - Experiments on SMT-LIB Instances
 - Experiments on Random Instances
5. Conclusions and potential research directions
A prototype SLS-based SMT solver for $\mathcal{LA}(\mathbb{Q})$: \textsc{WalkSMT}

Implementation

- implemented in C++
- built on top of \textsc{UbcSat} SLS platform [Tompkins & Hoos’04]
 - implements many existing SLS procedures
 - after various attempts and preliminary testing, we selected the \textsc{AdaptiveNovelty+} procedure
- uses MathSAT preprocessor and $\mathcal{LA}(\mathbb{Q})$-solver
- implements the optimizations previously described

Execution

- on a 2.66GHz 4GB RAM Xeon machine on linux
- 600s timeout
- multiple runs with different seeds for each formula
A prototype SLS-based SMT solver for $\mathcal{L}A(\mathbb{Q})$: \textsc{WalkSMT}

Implementation

- implemented in C++
- built on top of \textsc{Ubcsat} SLS platform [Tompkins & Hoos’04]
 - implements many existing SLS procedures
 - after various attempts and preliminary testing, we selected the \textsc{AdaptiveNovelty+} procedure
- uses MathSAT preprocessor and $\mathcal{L}A(\mathbb{Q})$-solver
- implements the optimizations previously described

Execution

- on a 2.66GHz 4GB RAM Xeon machine on linux
- 600s timeout
- multiple runs with different seeds for each formula
Comparison: \textsc{WalkSMT} vs. MathSAT

SLS-based SMT solver

- **Basic-WalkSMT** has no optimizations
- **Learning-WalkSMT** combines **Basic-WalkSMT** with preprocessing, unit simplification and learning
- **Best-WalkSMT** extends **Learning-WalkSMT** with multiple learning, pure-literal filtering optimizations

DPLL-based SMT solver

- MathSAT with all the optimizations enabled,
- MathSAT with early pruning and τ-propagation disabled
Comparison: \textsc{WalkSMT} vs. MathSAT

\begin{itemize}
\item \textsc{Basic-WalkSMT} has no optimizations
\item \textsc{Learning-WalkSMT} combines \textsc{Basic-WalkSMT} with preprocessing, unit simplification and learning
\item \textsc{Best-WalkSMT} extends \textsc{Learning-WalkSMT} with multiple learning, pure-literal filtering optimizations
\end{itemize}

\begin{itemize}
\item MathSAT with all the optimizations enabled,
\item MathSAT with early pruning and \(\tau\)-propagation disabled
\end{itemize}
Outline

1. Motivations and goals

2. Background

3. Stochastic Local Search for SMT
 - WALKSMT: basic schema
 - Enhancements

4. Preliminary Experimental Evaluation
 - Experiments on SMT-LIB Instances
 - Experiments on Random Instances

5. Conclusions and potential research directions
SMT-LIB Instances

“industrial” formulas on $\mathcal{L}(\mathbb{Q})$ (encoding real-word problems)
- 7 categories of formulas
- 20 formulas per category

Plots
- scatter-plots with logscale
- for WALKSMT, 3 runs with different seeds for each formula
SMT-LIB Instances

“industrial” formulas on $\mathcal{L}A(\mathbb{Q})$ (encoding real-word problems)

- 7 categories of formulas
- 20 formulas per category

Plots

- scatter-plots with logscale
- for WALKSMT, 3 runs with different seeds for each formula
Configurations of WALKSMT on SMT-LIB Instances

Execution time (in sec) of LEARNING WalkSMT

Execution time (in sec) of BASIC WalkSMT

QF_LRA/sc
QF_LRA/uart
QF_LRA/tta_startup
QF_LRA/TM
QF_LRA/sal
QF_LRA/miplib
QF_RDL/scheduling

Execution time (in sec) of BEST WalkSMT

Execution time (in sec) of LEARNING WalkSMT

QF_LRA/sc
QF_LRA/uart
QF_LRA/tta_startup
QF_LRA/TM
QF_LRA/sal
QF_LRA/miplib
QF_RDL/scheduling
WALKSMT vs MathSAT on SMT-LIB Instances

Execution time (in sec) of MathSAT
Execution time (in sec) of BEST WalkSMT
QF_LRA/sc
QF_LRA/uart
QF_LRA/tta_startup
QF_LRA/TM
QF_LRA/sal
QF_LRA/miplib
QF_RDL/scheduling

Griggio, Sebastiani, Tomasi ()
SLS for SMT
Results on SMT-LIB Instances

- Learning the discovered \mathcal{T}-lemmas is crucial
- optimizations are very significant
- huge gap between WALKSMT and MathSAT:
 - early pruning and \mathcal{T}-propagation cannot be applied to WALKSMT since it works on complete truth assignment
 - DPLL-based SAT solvers outperform SLS-based ones on industrial, structured instances since Boolean Constraint Propagation is fully exploited
Outline

1. Motivations and goals
2. Background
3. Stochastic Local Search for SMT
 - WALKSMT: basic schema
 - Enhancements
4. Preliminary Experimental Evaluation
 - Experiments on SMT-LIB Instances
 - Experiments on Random Instances
5. Conclusions and potential research directions
Randomly-generated Instances

3-CNF formula generated in terms of $\langle m, n, a \rangle$

- m clauses
- n \mathcal{T}-variables
- a \mathcal{T}-atoms $\sum_{i=0}^{4} c_ix_i \leq c_0$ where
 - variable x_i chosen with probability $1/n$
 - constant terms c and c_i randomly taken in $[-100, 100]$

Plots

- plots represent the execution time vs ratio $r = m/a$
- each point corresponds to the median time on 50 different formulas
- for WALKSMT, time is the median value of 10 runs with different seed
Randomly-generated Instances

3-CNF formula generated in terms of $\langle m, n, a \rangle$

- m clauses
- $n T$-variables
- $a T$-atoms $\sum_{i=0}^{4} c_i x_i \leq c_0$ where
 - variable x_i chosen with probability $1/n$
 - constant terms c and c_i randomly taken in $[-100, 100]$

Plots

- plots represent the execution time vs ratio $r = m/a$
- each point corresponds to the median time on 50 different formulas
- for WALKSMT, time is the median value of 10 runs with different seed
Random Instances with 20 T-variables

Griggio, Sebastiani, Tomasi ()

SLS for SMT
Random Instances with 20 \mathcal{T}-variables
Random Instances with 20 T-variables

![Graphs showing execution time and satisfiability percentage for different solvers with varying ratios of clauses to atoms.](image-url)
Results on Random Instances

- multiple learning and filtering not very effective
- small difference between performance of \textsc{WalkSMT} and MathSAT
Outline

1. Motivations and goals
2. Background
3. Stochastic Local Search for SMT
 - WALKSMT: basic schema
 - Enhancements
4. Preliminary Experimental Evaluation
 - Experiments on SMT-LIB Instances
 - Experiments on Random Instances
5. Conclusions and potential research directions
Conclusions and potential research directions

Conclusions

- SLS for SMT: interesting research problem
- presented \textsc{WalkSMT}, a prototype SLS-based SMT procedure
- so far performances far from DPLL-based SMT solvers on SMT-LIB instances, comparable on random ones

Potential research directions

- investigate theory-driven techniques
- focus on specific problems (e.g., scheduling?)
- explore optimization problems
- ...
Conclusions and potential research directions

Conclusions

- SLS for SMT: interesting research problem
- presented WALKSMT, a prototype SLS-based SMT procedure
- so far performances far from DPLL-based SMT solvers on SMT-LIB instances, comparable on random ones

Potential research directions

- investigate theory-driven techniques
- focus on specific problems (e.g., scheduling?)
- explore optimization problems
- ...

Griggio, Sebastiani, Tomasi
Thank you for your attention!